Learn R Programming

VineCopula (version 1.0)

C2RVine: Transform C-vine to R-vine structure

Description

This function transforms a C-vine structure from the package CDVine to the corresponding R-vine structure.

Usage

C2RVine(order, family, par, par2=rep(0,length(family)))

Arguments

order
A d-dimensional vector specifying the order of the root nodes in the C-vine.
family
A d*(d-1)/2 vector of pair-copula families with values 0 = independence copula 1 = Gaussian copula 2 = Student t copula (t-copula) 3 = Clayton copula 4 = Gumbel copula 5 =
par
A d*(d-1)/2 vector of pair-copula parameters.
par2
A d*(d-1)/2 vector of second pair-copula parameters (optional; default: par2 = rep(0,length(family))), necessary for the t-, BB1, BB6, BB7 and BB8 copulas.

Value

References

Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2011). Selecting and estimating regular vine copulae and application to financial returns. Submitted for publication. http://mediatum.ub.tum.de/node?id=1079277 Kurowicka, D. and H. Joe (Eds.) (2011). DEPENDENCE MODELING: Vine Copula Handbook. Singapore: World Scientific Publishing Co.

See Also

RVineMatrix, D2RVine, R2CVine

Examples

Run this code
# simulate a sample of size 500 from a 4-dimensional C-vine  
# copula model with mixed pair-copulas
# load package CDVine
library(CDVine)
d = 4
dd = d*(d-1)/2
order = 1:d
family = c(1,2,3,4,7,3)
par = c(0.5,0.4,2,1.5,1.2,1.5)
par2 = c(0,5,0,0,2,0)
type = 1
simdata = CDVineSim(500,family,par,par2,type)

# determine log-likelihood
out = CDVineLogLik(simdata,family,par,par2,type)
out$loglik

# transform to R-vine matrix notation
RVM = C2RVine(order,family,par,par2)

# check that log-likelihood stays the same
out2 = RVineLogLik(simdata,RVM)
out2$loglik

Run the code above in your browser using DataLab