Learn R Programming

⚠️There's a newer version (2.6.1) of this package.Take me there.

VineCopula (version 1.2)

Statistical inference of vine copulas

Description

This package provides functions for statistical inference of vine copulas. It contains tools for bivariate exploratory data analysis, bivariate copula selection and (vine) tree construction. Models can be estimated either sequentially or by joint maximum likelihood estimation. Sampling algorithms and plotting methods are also included. Data is assumed to lie in the unit hypercube (so-called copula data). For C- and D-vines links to the package CDVine are provided.

Copy Link

Version

Install

install.packages('VineCopula')

Monthly Downloads

2,950

Version

1.2

License

GPL (>= 2)

Maintainer

Ulf Schepsmeier

Last Published

November 11th, 2013

Functions in VineCopula (1.2)

BiCopGofTest

Goodness-of-fit test for bivariate copulas
BiCopChiPlot

Chi-plot for bivariate copula data
RVineHessian

Hessian matrix of the log-likelihood of an R-vine copula model
D2RVine

Transform D-vine to R-vine structure
BiCopPar2TailDep

Tail dependence coefficients of a bivariate copula
RVinePar2Beta

Blomqvist's beta values of an R-vine copula model
BiCopSelect

Selection and maximum likelihood estimation of bivariate copula families
RVineAIC/BIC

AIC and BIC of an R-vine copula model
RVineGofTest

Goodness-of-fit tests for R-vine copula models
BiCopPar2Beta

Blomqvist's beta value of a bivariate copula
RVineCopSelect

Sequential copula selection and estimation of R-vine copula models
BiCopHfuncDeriv

Derivatives of the h-function of a bivariate copula
BiCopTau2Par

Parameter of a bivariate copula for a given Kendall's tau value
RVinePIT

Probability integral transformation for R-vine copula models
VineCopula-package

Statistical inference of vine copulas
RVineLogLik

Log-likelihood of an R-vine copula model
BiCopKPlot

Kendall's plot (K-plot) for bivariate copula data
C2RVine

Transform C-vine to R-vine structure
BiCopName

Bivariate copula family names
RVineMatrix

R-vine copula model in matrix notation
BiCopIndTest

Independence test for bivariate copula data
BiCopPDF

Density of a bivariate copula
BetaMatrix

Matrix of empirical Blomqvist's beta values
RVineGrad

Gradient of the log-likelihood of an R-vine copula model
TauMatrix

Matrix of empirical Kendall's tau values
RVineMatrixNormalize

Permute the variables to achieve a natural ordering
BiCopHfuncDeriv2

Second derivatives of the h-function of a bivariate copula
RVineCor2pcor

correlations to partial correlations and vice versa for R-vines
BiCopCDF

Distribution function of a bivariate copula
BiCopEst

Parameter estimation for bivariate copula data using inversion of Kendall's tau or maximum likelihood estimation
BiCopHfunc

Conditional distribution function (h-function) of a bivariate copula
RVineSeqEst

Sequential estimation of an R-vine copula model
BiCopMetaContour

Contour plot of bivariate meta distribution with different margins and copula (theoretical and empirical)
BiCopDeriv

Derivatives of a bivariate copula density
RVineMatrixCheck

Vine Matrix validation
RVinePar2Tau

Kendall's tau values of an R-vine copula model
daxreturns

Major German Stocks
RVineVuongTest

Vuong test comparing two R-vine copula models
RVineStructureSelect

Sequential specification of R- and C-vine copula models
BiCopDeriv2

Second derivatives of a bivariate copula density
BiCopLambda

Lambda-function (plot) for bivariate copula data
BiCopSim

Simulation from a bivariate copula
BiCopPar2Tau

Kendall's tau value of a bivariate copula
BiCopVuongClarke

Scoring goodness-of-fit test based on Vuong and Clarke tests for bivariate copula data
RVineMLE

Maximum likelihood estimation of an R-vine copula model
RVineClarkeTest

Clarke test comparing two R-vine copula models
RVineTreePlot

Plot function for R-vine trees
RVineSim

Simulation from an R-vine copula model