BiCopPar2Tau(family, par, par2=0)
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank par2 = 0
).
Note that the degrees of freedom parameter of the t-copula does not need to be set,
because the theoretical Kendall's1, 2
$\frac{2}{\pi}\arcsin(\theta)$
3, 13
$\frac{\theta}{\theta+2}$
4, 14
$1-\frac{1}{\theta}$
5
$1-\frac{4}{\theta}+4\frac{D_1(\theta)}{\theta}$
with $D_1(\theta)=\int_0^\theta \frac{x/\theta}{\exp(x)-1}dx$ (Debye function)
6, 16
$1+\frac{4}{\theta^2}\int_0^1 x\log(x)(1-x)^{2(1-\theta)/\theta}dx$
7, 17
$1-\frac{2}{\delta(\theta+2)}$
8, 18
$1+4\int_0^1 -\log(-(1-t)^\theta+1)(1-t-(1-t)^{-\theta}+(1-t)^{-\theta}t)/(\delta\theta) dt$
9, 19
$1+4\int_0^1 ( (1-(1-t)^{\theta})^{-\delta} - )/( -\theta\delta(1-t)^{\theta-1}(1-(1-t)^{\theta})^{-\delta-1} ) dt$
10, 20
$1+4\int_0^1 -\log \left( ((1-t\delta)^\theta-1)/((1-\delta)^\theta-1) \right)$
$* (1-t\delta-(1-t\delta)^{-\theta}+(1-t\delta)^{-\theta}t\delta)/(\theta\delta) dt$
23, 33
$\frac{\theta}{2-\theta}$
24, 34
$-1-\frac{1}{\theta}$
26, 36
$-1-\frac{4}{\theta^2}\int_0^1 x\log(x)(1-x)^{-2(1+\theta)/\theta}dx$
27, 37
$-1-\frac{2}{\delta(2-\theta)}$
28, 38
$-1-4\int_0^1 -\log(-(1-t)^{-\theta}+1)(1-t-(1-t)^{\theta}+(1-t)^{\theta}t)/(\delta\theta) dt$
29, 39
$-1-4\int_0^1 ( (1-(1-t)^{-\theta})^{\delta} - )/( -\theta\delta(1-t)^{-\theta-1}(1-(1-t)^{-\theta})^{\delta-1} ) dt$
30, 40
$-1-4\int_0^1 -\log \left( ((1+t\delta)^{-\theta}-1)/((1+\delta)^{-\theta}-1) \right)$
$* (1+t\delta-(1+t\delta)^{\theta}-(1+t\delta)^{\theta}t\delta)/(\theta\delta) dt$
104,114
$\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt$
with $A(t) = (1-\delta)t+[(\delta(1-t))^{\theta}+t^{\theta}]^{1/\theta}$
204,214
$\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt$
with $A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}$
124,134
$-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt$
with $A(t) = (1-\delta)t+[(\delta(1-t))^{-\theta}+t^{-\theta}]^{-1/\theta}$
224,234
$-\int_0^1 \frac{t(1-t)A^{\prime\prime}(t)}{A(t)}dt$
with $A(t) = (1-\delta)(1-t)+[(1-t)^{-\theta}+(\delta t)^{-\theta}]^{-1/\theta}$
}BiCopTau2Par
## Example 1: Gaussian copula
tt1 = BiCopPar2Tau(1,0.7)
# transform back
BiCopTau2Par(1,tt1)
## Example 2: Clayton copula
BiCopPar2Tau(3,1.3)
Run the code above in your browser using DataLab