Learn R Programming

VineCopula (version 1.4)

BiCopCDF: Distribution Function of a Bivariate Copula

Description

This function evaluates the cumulative distribution function (CDF) of a given parametric bivariate copula.

Usage

BiCopCDF(u1, u2, family, par, par2 = 0)

Arguments

u1,u2
Numeric vectors of equal length with values in [0,1].
family
An integer defining the bivariate copula family: 0 = independence copula 1 = Gaussian copula 3 = Clayton copula 4 = Gumbel copula 5 = Frank copula 6 = Joe copula 7<
par
Copula parameter.
par2
Second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

Value

  • A numeric vector of the bivariate copula distribution function evaluated at u1 and u2.

See Also

BiCopPDF, BiCopHfunc, BiCopSim

Examples

Run this code
# simulate from a bivariate Clayton
simdata <- BiCopSim(300, 3, 3.4)

# evaluate the distribution function of the bivariate t-copula
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopCDF(u1, u2, 3, 3.4)

Run the code above in your browser using DataLab