Learn R Programming

VineCopula (version 1.6-1)

BiCopDeriv2: Second Derivatives of a Bivariate Copula Density

Description

This function evaluates the second derivative of a given parametric bivariate copula density with respect to its parameter(s) and/or its arguments.

Usage

BiCopDeriv2(u1, u2, family, par, par2 = 0, deriv = "par", obj = NULL)

Arguments

u1,u2
Numeric vectors of equal length with values in [0,1].
family
An integer defining the bivariate copula family: 0 = independence copula 1 = Gaussian copula 2 = Student t copula (t-copula) 3 = Clayton copula 4 = Gumbel copula 5 = Frank
par
Copula parameter.
par2
Second parameter for bivariate t-copula; default: par2 = 0.
deriv
Derivative argument "par" = second derivative with respect to the first parameter (default) "par2" = second derivative with respect to the second parameter (only available for the t-copula) "u1" = second derivative
obj
BiCop object containing the family and parameter specification.

Value

  • A numeric vector of the second bivariate copula derivative with respect to deriv evaluated at u1 and u2 with parameter(s) par and par2.

Details

If the family and parameter specification is stored in a BiCop object obj, the alternative version BiCopDeriv2(u1, u2, obj, deriv = "par") can be used.

References

Schepsmeier, U. and J. Stoeber (2012). Derivatives and Fisher information of bivariate copulas. Statistical Papers. http://link.springer.com/article/10.1007/s00362-013-0498-x.

See Also

RVineGrad, RVineHessian, BiCopDeriv, BiCopHfuncDeriv, BiCop

Examples

Run this code
## simulate from a bivariate t-copula
simdata <- BiCopSim(300, 2, -0.7, par2 = 4)

## second derivative of the bivariate t-copula with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv2(u1, u2, 2, -0.7, par2 = 4, deriv = "par")

## estimate a bivariate copula from the data and evaluate its derivative
cop <- BiCopEst(u1, u2, family = 2)
BiCopDeriv2(u1, u2, cop, deriv = "par")

Run the code above in your browser using DataLab