BiCopPar2TailDep(family, par, par2 = 0, obj = NULL)
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank par2 = 0
).BiCop
object containing the family and parameter specification.1
- -
2
$2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)$ $2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)$
3
$2^{-1/\theta}$ -
4
- $2-2^{1/\theta}$
5
- -
6
- $2-2^{1/\theta}$
7
$2^{-1/(\theta\delta)}$ $2-2^{1/\delta}$
8
- $2-2^{1/(\theta\delta)}$
9
$2^{-1/\delta}$ $2-2^{1/\theta}$
10
- $2-2^{1/\theta}$ if $\delta=1$ otherwise 0
13
- $2^{-1/\theta}$
14
$2-2^{1/\theta}$ -
16
$2-2^{1/\theta}$ -
17
$2-2^{1/\delta}$ $2^{-1/(\theta\delta)}$
18
$2-2^{1/(\theta\delta)}$ -
19
$2-2^{1/\theta}$ $2^{-1/\delta}$
20
$2-2^{1/\theta}$ if $\delta=1$ otherwise 0 -
23, 33
- -
24, 34
- -
26, 36
- -
27, 37
- -
28, 38
- -
29, 39
- -
30, 40
- -
104,204
- $\delta+1-(\delta^{\theta}+1)^{1/\theta}$
114, 214
$1+\delta-(\delta^{\theta}+1)^{1/\theta}$ -
124, 224
- -
134, 234
- -
}BiCop
object obj
, the alternative version
BiCopPar2TailDep(obj)
can be used.BiCopPar2Tau
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
## Example 2: t copula
BiCopPar2TailDep(2, 0.7, 4)
Run the code above in your browser using DataLab