Evaluate the conditional distribution function (h-function) of a given parametric bivariate copula.
BiCopHfunc(u1, u2, family, par, par2 = 0, obj = NULL,
check.pars = TRUE)BiCopHfunc1(u1, u2, family, par, par2 = 0, obj = NULL,
check.pars = TRUE)
BiCopHfunc2(u1, u2, family, par, par2 = 0, obj = NULL,
check.pars = TRUE)
numeric vectors of equal length with values in [0,1].
integer; single number or vector of size length(u1)
;
defines the bivariate copula family:
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; ``survival Clayton'')
14
= rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
17
= rotated BB1 copula (180 degrees; ``survival BB1'')
18
= rotated BB6 copula (180 degrees; ``survival BB6'')
19
= rotated BB7 copula (180 degrees; ``survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
24
= rotated Gumbel copula (90 degrees)
26
= rotated Joe copula (90 degrees)
27
= rotated BB1 copula (90 degrees)
28
= rotated BB6 copula (90 degrees)
29
= rotated BB7 copula (90 degrees)
30
= rotated BB8 copula (90 degrees)
33
= rotated Clayton copula (270 degrees)
34
= rotated Gumbel copula (270 degrees)
36
= rotated Joe copula (270 degrees)
37
= rotated BB1 copula (270 degrees)
38
= rotated BB6 copula (270 degrees)
39
= rotated BB7 copula (270 degrees)
40
= rotated BB8 copula (270 degrees)
104
= Tawn type 1 copula
114
= rotated Tawn type 1 copula (180 degrees)
124
= rotated Tawn type 1 copula (90 degrees)
134
= rotated Tawn type 1 copula (270 degrees)
204
= Tawn type 2 copula
214
= rotated Tawn type 2 copula (180 degrees)
224
= rotated Tawn type 2 copula (90 degrees)
234
= rotated Tawn type 2 copula (270 degrees)
numeric; single number or vector of size length(u1)
;
copula parameter.
numeric; single number or vector of size length(u1)
;
second parameter for bivariate copulas with two parameters (t, BB1, BB6,
BB7, BB8, Tawn type 1 and type 2; default: par2 = 0
). par2
should be an positive integer for the Students's t copula family = 2
.
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
BiCopHfunc
returns a list with
Numeric vector of the conditional distribution
function (h-function) of the copula family
with parameter(s)
par
, par2
evaluated at u2
given u1
, i.e.,
\(h_1(u_2|u_1;\boldsymbol{\theta})\).
Numeric vector of the conditional distribution function
(h-function) of the copula family
with parameter(s) par
,
par2
evaluated at u1
given u2
, i.e.,
\(h_2(u_1|u_2;\boldsymbol{\theta})\).
The h-function is defined as the conditional distribution function of a bivariate copula, i.e., $$h_1(u_2|u_1;\boldsymbol{\theta}) := P(U_2 \le u_2 | U_1 = u_1) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_1}, $$ $$h_2(u_1|u_2;\boldsymbol{\theta}) := P(U_1 \le u_1 | U_2 = u_2) = \frac{\partial C(u_1, u_2; \boldsymbol{\theta})}{\partial u_2}, $$ where \((U_1, U_2) \sim C\), and \(C\) is a bivariate copula distribution function with parameter(s) \(\boldsymbol{\theta}\). For more details see Aas et al. (2009).
If the family and parameter specification is stored in a BiCop
object obj
, the alternative versions
BiCopHfunc(u1, u2, obj) BiCopHfunc1(u1, u2, obj) BiCopHfunc2(u1, u2, obj)
can be used.
Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44 (2), 182-198.
BiCopHinv
, BiCopPDF
, BiCopCDF
,
RVineLogLik
, RVineSeqEst
, BiCop
# NOT RUN {
data(daxreturns)
# h-functions of the Gaussian copula
cop <- BiCop(family = 1, par = 0.5)
h <- BiCopHfunc(daxreturns[, 2], daxreturns[, 1], cop)
# }
# NOT RUN {
# or using the fast versions
h1 <- BiCopHfunc1(daxreturns[, 2], daxreturns[, 1], cop)
h2 <- BiCopHfunc2(daxreturns[, 2], daxreturns[, 1], cop)
all.equal(h$hfunc1, h1)
all.equal(h$hfunc2, h2)
# }
Run the code above in your browser using DataLab