This function computes the theoretical Blomqvist's beta value of a bivariate copula for given parameter values.
BiCopPar2Beta(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
integer; single number or vector of size n
; defines the
bivariate copula family:
0
= independence copula
2
= Student t copula (t-copula)
1
= Gaussian copula
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; ``survival Clayton'')
14
= rotated Gumbel copula (180 degrees; ``survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
17
= rotated BB1 copula (180 degrees; ``survival BB1'')
18
= rotated BB6 copula (180 degrees; ``survival BB6'')
19
= rotated BB7 copula (180 degrees; ``survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
24
= rotated Gumbel copula (90 degrees)
26
= rotated Joe copula (90 degrees)
27
= rotated BB1 copula (90 degrees)
28
= rotated BB6 copula (90 degrees)
29
= rotated BB7 copula (90 degrees)
30
= rotated BB8 copula (90 degrees)
33
= rotated Clayton copula (270 degrees)
34
= rotated Gumbel copula (270 degrees)
36
= rotated Joe copula (270 degrees)
37
= rotated BB1 copula (270 degrees)
38
= rotated BB6 copula (270 degrees)
39
= rotated BB7 copula (270 degrees)
40
= rotated BB8 copula (270 degrees)
104
= Tawn type 1 copula
114
= rotated Tawn type 1 copula (180 degrees)
124
= rotated Tawn type 1 copula (90 degrees)
134
= rotated Tawn type 1 copula (270 degrees)
204
= Tawn type 2 copula
214
= rotated Tawn type 2 copula (180 degrees)
224
= rotated Tawn type 2 copula (90 degrees)
234
= rotated Tawn type 2 copula (270 degrees)
Note that the Student's t-copula is not allowed since the CDF of the t-copula
is not implemented (see BiCopCDF
).
numeric; single number or vector of size n
; copula
parameter.
numeric; single number or vector of size n
; second
parameter for the two parameter BB1, BB6, BB7, BB8, Tawn type 1 and type 2
copulas (default: par2 = 0
).
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Theoretical value of Blomqvist's beta corresponding to the bivariate
copula family
and parameter(s) par
, par2
.
If the family and parameter specification is stored in a BiCop
object obj
, the alternative version
BiCopPar2Beta(obj)
can be used.
Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals of Mathematical Statistics, 21(4), 593-600.
Nelsen, R. (2006). An introduction to copulas. Springer
# NOT RUN {
## Example 1: Gaussian copula
BiCopPar2Beta(family = 1, par = 0.7)
BiCop(1, 0.7)$beta # alternative
## Example 2: Clayton copula
BiCopPar2Beta(family = 3, par = 2)
## Example 3: different copula families
BiCopPar2Beta(family = c(3,4,6), par = 2:4)
# }
Run the code above in your browser using DataLab