This function evaluates the second derivative of a given parametric bivariate copula density with respect to its parameter(s) and/or its arguments.
BiCopDeriv2(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
A numeric vector of the second-order bivariate copula derivative
of the copula family
with parameter(s) par
, par2
with respect to deriv
evaluated at u1
and u2
.
numeric vectors of equal length with values in
integer; single number or vector of size length(u1)
;
defines the bivariate copula family:
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'')
16
= rotated Joe copula (180 degrees; ``survival Joe'')
23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
Copula parameter.
integer; single number or vector of size length(u1)
;
second parameter for the t-Copula; default is par2 = 0
, should be an
positive integer for the Students's t copula family = 2
.
Derivative argument
"par"
= second derivative with respect to
the first parameter (default)
"par2"
= second derivative with respect to
the second parameter (only available for the t-copula)
"u1"
= second derivative with respect to
the first argument u1
"u2"
= second derivative with respect to
the second argument u2
"par1par2"
= second derivative with respect to
the first and second parameter (only available for the t-copula)
"par1u1"
= second derivative with respect to
the first parameter and the first argument
"par2u1"
= second derivative with respect to the
second parameter and the first argument (only available for the t-copula)
"par1u2"
= second derivative with respect to
the first parameter and the second argument
"par2u2"
= second derivative with respect to
the second parameter and the second argument
(only available for the t-copula)
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Ulf Schepsmeier, Jakob Stoeber
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopDeriv2(u1, u2, obj, deriv = "par")
can be used.
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
RVineGrad()
, RVineHessian()
,
BiCopDeriv()
, BiCopHfuncDeriv()
, BiCop()
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## second derivative of the Student-t copula w.r.t. the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv2(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its second derivative w.r.t. the second argument u2
BiCopDeriv2(u1, u2, cop, deriv = "u2")
Run the code above in your browser using DataLab