The given matrix is tested to be a valid R-vine matrix.
RVineMatrixCheck(M)
1
for OK;
-4
matrix is neither lower nor upper triangular;
-3
diagonal can not be put in order d:1;
-2
for not permutation of j:d in column d-j;
-1
if cannot find proper binary array from array in natural order.
A
Harry Joe
Joe H, Cooke RM and Kurowicka D (2011). Regular vines: generation algorithm and number of equivalence classes. In Dependence Modeling: Vine Copula Handbook, pp 219--231. World Scientific, Singapore.
RVineMatrix()
A1 <- matrix(c(6, 0, 0, 0, 0, 0,
5, 5, 0, 0, 0, 0,
3, 4, 4, 0, 0, 0,
4, 3, 3, 3, 0, 0,
1, 1, 2, 2, 2, 0,
2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b1 <- RVineMatrixCheck(A1)
print(b1)
# improper vine matrix, code=-1
A2 <- matrix(c(6, 0, 0, 0, 0, 0,
5, 5, 0, 0, 0, 0,
4, 4, 4, 0, 0, 0,
1, 3, 3, 3, 0, 0,
3, 1, 2, 2, 2, 0,
2, 2, 1, 1, 1,1 ), 6, 6, byrow = TRUE)
b2 <- RVineMatrixCheck(A2)
print(b2)
# improper vine matrix, code=-2
A3 <- matrix(c(6, 0, 0, 0, 0, 0,
3, 5, 0, 0, 0, 0,
3, 4, 4, 0, 0, 0,
4, 3, 3, 3, 0, 0,
1, 1, 2, 2, 2, 0,
2, 2, 1, 1, 1, 1), 6, 6, byrow = TRUE)
b3 <- RVineMatrixCheck(A3)
print(b3)
Run the code above in your browser using DataLab