50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


VineCopula (version 2.6.1)

BiCopPar2TailDep: Tail Dependence Coefficients of a Bivariate Copula

Description

This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

Usage

BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Value

lower

Lower tail dependence coefficient for the given bivariate copula family and parameter(s) par, par2: λL=limu0C(u,u)u

upper

Upper tail dependence coefficient for the given bivariate copula family family and parameter(s) par, par2: λU=limu112u+C(u,u)1u

Lower and upper tail dependence coefficients for bivariate copula families and parameters (θ for one parameter families and the first parameter of the t-copula with ν degrees of freedom, θ and δ for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

No.Lower tail dependenceUpper tail dependence
1--
22tν+1(ν+11θ1+θ)2tν+1(ν+11θ1+θ)
321/θ-
4-221/θ
5--
6-221/θ
721/(θδ)221/δ
8-221/(θδ)
921/δ221/θ
10-221/θ if δ=1 otherwise 0
13-21/θ
14221/θ-
16221/θ-
17221/δ21/(θδ)
18221/(θδ)-
19221/θ21/δ
20221/θ if δ=1 otherwise 0-
23, 33--
24, 34--
26, 36--
27, 37--
28, 38--
29, 39--
30, 40--
104,204-δ+1(δθ+1)1/θ
114, 2141+δ(δθ+1)1/θ-
124, 224--
134, 234--

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; survival Gumbel'')
16 = rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; survival BB1'')
18 = rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; survival BB7'')
20 = rotated BB8 copula (180 degrees; ``survival BB8'')
23 = rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Author

Eike Brechmann

Details

If the family and parameter specification is stored in a BiCop object obj, the alternative version

BiCopPar2TailDep(obj)

can be used.

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See Also

BiCopPar2Tau()

Examples

Run this code
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep  # alternative

## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)

## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)

Run the code above in your browser using DataLab