Last chance! 50% off unlimited learning
Sale ends in
This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.
BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
Lower tail dependence coefficient for the given
bivariate copula family
and parameter(s) par
, par2
:
Upper tail dependence coefficient for the given bivariate
copula family family
and parameter(s) par
, par2
:
Lower and upper tail dependence coefficients for bivariate copula families
and parameters (
No. | Lower tail dependence | Upper tail dependence |
1 | - | - |
2 | ||
3 | - | |
4 | - | |
5 | - | - |
6 | - | |
7 | ||
8 | - | |
9 | ||
10 | - | |
13 | - | |
14 | - | |
16 | - | |
17 | ||
18 | - | |
19 | ||
20 | - | |
23, 33 | - | - |
24, 34 | - | - |
26, 36 | - | - |
27, 37 | - | - |
28, 38 | - | - |
29, 39 | - | - |
30, 40 | - | - |
104,204 | - | |
114, 214 | - | |
124, 224 | - | - |
134, 234 | - | - |
integer; single number or vector of size n
; defines the
bivariate copula family:
0
= independence copula
1
= Gaussian copula
2
= Student t copula (t-copula)
3
= Clayton copula
4
= Gumbel copula
5
= Frank copula
6
= Joe copula
7
= BB1 copula
8
= BB6 copula
9
= BB7 copula
10
= BB8 copula
13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'')
16
= rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees;
survival BB1'')
18
= rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees;
survival BB7'')
20
= rotated BB8 copula (180 degrees; ``survival BB8'')
23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)
numeric; single number or vector of size n
; copula parameter.
numeric; single number or vector of size n
; second
parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8,
Tawn type 1 and type 2; default: par2 = 0
). par2
should be an
positive integer for the Students's t copula family = 2
.
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Eike Brechmann
If the family and parameter specification is stored in a BiCop
object
obj
, the alternative version
BiCopPar2TailDep(obj)
can be used.
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
BiCopPar2Tau()
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep # alternative
## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)
Run the code above in your browser using DataLab