
This function applies the probability integral transformation (PIT) for R-vine copula models to given copula data.
RVinePIT(data, RVM)
An N
x d matrix of PIT data from the given R-vine copula
model.
An N x d data matrix (with uniform margins).
RVineMatrix()
objects of the R-vine model.
Ulf Schepsmeier
The multivariate probability integral transformation (PIT) of Rosenblatt
(1952) transforms the copula data
Let
Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. The Annals of Mathematical Statistics 23 (3), 470-472.
Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.
RVineGofTest()
# load data set
data(daxreturns)
# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:3], c(1:6))
# PIT data
pit <- RVinePIT(daxreturns[,1:3], RVM)
par(mfrow = c(1,2))
plot(daxreturns[,1], daxreturns[,2]) # correlated data
plot(pit[,1], pit[,2]) # i.i.d. data
cor(pit, method = "kendall")
Run the code above in your browser using DataLab