50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

VineCopula (version 2.6.1)

RVinePIT: Probability Integral Transformation for R-Vine Copula Models

Description

This function applies the probability integral transformation (PIT) for R-vine copula models to given copula data.

Usage

RVinePIT(data, RVM)

Value

An N x d matrix of PIT data from the given R-vine copula model.

Arguments

data

An N x d data matrix (with uniform margins).

RVM

RVineMatrix() objects of the R-vine model.

Author

Ulf Schepsmeier

Details

The multivariate probability integral transformation (PIT) of Rosenblatt (1952) transforms the copula data u=(u1,,ud) with a given multivariate copula C into independent data in [0,1]d, where d is the dimension of the data set.

Let u=(u1,,ud) denote copula data of dimension d. Further let C be the joint cdf of u=(u1,,ud). Then Rosenblatt's transformation of u, denoted as y=(y1,,yd), is defined as y1:=u1,  y2:=C(u2|u1), yd:=C(ud|u1,,ud1), where C(uk|u1,,uk1) is the conditional copula of Uk given U1=u1,,Uk1=uk1,k=2,,d. The data vector y=(y1,,yd) is now i.i.d. with yiU[0,1]. The algorithm for the R-vine PIT is given in the appendix of Schepsmeier (2015).

References

Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. The Annals of Mathematical Statistics 23 (3), 470-472.

Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for vine copula models with fixed margins. Journal of Multivariate Analysis 138, 34-52.

See Also

RVineGofTest()

Examples

Run this code
# load data set
data(daxreturns)

# select the R-vine structure, families and parameters
RVM <- RVineStructureSelect(daxreturns[,1:3], c(1:6))

# PIT data
pit <- RVinePIT(daxreturns[,1:3], RVM)

par(mfrow = c(1,2))
plot(daxreturns[,1], daxreturns[,2])	# correlated data
plot(pit[,1], pit[,2])	# i.i.d. data

cor(pit, method = "kendall")

Run the code above in your browser using DataLab