Learn R Programming

VisualizeSimon2Stage (version 0.1.7)

simon_pr: Probabilities of one Simon's Two-Stage Design

Description

Probabilities of frail (i.e., early termination) and success (to reject \(H_0\)) of one Simon's two-stage design, at given true response rate(s).

Usage

simon_pr(prob, object, ...)

# S3 method for ph2simon simon_pr(prob, object, ...)

# S3 method for ph2simon4 simon_pr( prob, object, r1 = object@r1, n1 = object@n1, r = object@r, n = object@n, ... )

Value

Function simon_pr() returns simon_pr object.

Arguments

prob

double scalar or vector, true response rate(s) \(p\)

object

a ph2simon or ph2simon4 object

...

parameters of function ph2simon4(), most importantly type

r1, n1, r, n

(optional) integer scalars, see ph2simon4.

Slots

frail

numeric scalar or vector, probabilities of frail (i.e., early termination) at given true response rate(s) \(p\).

reject

numeric scalar or vector, probabilities of success (to reject \(H_0\)) at given true response rate(s) \(p\).

eN

numeric scalar or vector, expected sample size(s) \(\textrm{E}(n)\) at given true response rate(s) \(p\).

prob

double scalar or vector, true response rate(s) \(p\)

Details

Given one Simon's two-stage design \((r_1,n_1,r,n)\) and a true response rate \(p\), we have the number of Stage-1 positive responses \(X_1 \sim \textrm{Binom}(n_1, p)\) and the number of Stage-2 positive responses \(X_2 \sim \textrm{Binom}(n-n_1, p)\). Obviously \(X_1\) and \(X_2\) are independent.

The probability of early termination is $$p_{\textrm{frail}} = \textrm{Pr}(X_1 \leq r_1)$$

The probability of failure to reject \(H_0\) is $$\sum_{s_1 = r_1+1}^{n_1} \textrm{Pr}(X_1=s_1)\cdot\textrm{Pr}(X_2 \leq (r-s_1))$$

The probability of successfully rejecting \(H_0\) is $$\sum_{s_1 = r_1+1}^{n_1} \textrm{Pr}(X_1=s_1)\cdot\textrm{Pr}(X_2 > (r-s_1))$$

The expected sample size is $$\textrm{E}(n) = p_{\textrm{frail}} \cdot n_1 + (1 - p_{\textrm{frail}}) \cdot n$$

Parameters nomenclature of r1, n1, r and n follows that of PASS and function ph2simon.

Examples

Run this code
(x = clinfun::ph2simon(pu = .2, pa = .4, ep1 = .05, ep2 = .1)) 
simon_pr(prob = c(.2, .3, .4), object = x)
simon_pr.ph2simon4(prob = c(.2, .3, .4), r1 = 5L, n1 = 24L, r = 13L, n = 45L) # internal use

Run the code above in your browser using DataLab