data("HMDA", package = "AER")
fitBinomial <- walsGLM(deny ~ pirat + hirat + lvrat + chist + mhist + phist |
selfemp + afam, data = HMDA, family = binomialWALS(),
prior = weibull())
summary(fitBinomial)
data("NMES1988", package = "AER")
fitPoisson <- walsGLM(emergency ~ health + chronic + age + gender |
I((age^2)/10) + married + region, data = NMES1988,
family = poissonWALS(), prior = laplace())
summary(fitPoisson)
## Example for walsGLM.matrix()
data("HMDA", package = "AER")
X <- model.matrix(deny ~ pirat + hirat + lvrat + chist + mhist + phist + selfemp + afam,
data = HMDA)
X1 <- X[,c("(Intercept)", "pirat", "hirat", "lvrat", "chist2", "chist3",
"chist4", "chist5", "chist6", "mhist2", "mhist3", "mhist4", "phistyes")]
X2 <- X[,c("selfempyes", "afamyes")]
y <- HMDA$deny
fit <- walsGLM(X1, X2, y, family = binomialWALS(), prior = weibull())
summary(fit)
Run the code above in your browser using DataLab