Variable Selection for Highly Correlated Predictors
Description
It proposes a novel variable selection approach taking into account the correlations that may exist between the predictors of the design matrix in a high-dimensional linear model. Our approach consists in rewriting the initial high-dimensional linear model to remove the correlation between the predictors and in applying the generalized Lasso criterion. For further details we refer the reader to the paper (Zhu et al., 2020).