Learn R Programming

WPC (version 1.0)

SoloWPCCurve: Generate Single Weighted Predictiveness Curve in Graph

Description

This function will generate one single weighted predictiveness curve in graph using the estimates provided by "npr.wpc.est" function. It helps to visualize the relationship between survival rate and biomarker.

Usage

SoloWPCCurve(wpc, xlab, ylab, main, ylim , xlim, type, col, lwd, legendloc, legendtxt, confi, ptsest)

Arguments

wpc
It is the object generated by function cox.wpc.est or npr.wpc.est.
xlab
It is the title for x axis; default is "Marker".
ylab
It is the title for y axis; default is "Survival Rate".
main
It is the title for the plot; default is "Weighted Predictiveness Curve".
ylim
It creates the continuous scale of y axis of the plot; default is "c(0,1)".
xlim
It creates the continuous scale of y axis of the plot; default is "c(0,100)".
type
It defines the type of the curve; default is "l".
col
It defines the color of the curve; default is "red".
lwd
It defines the width of the curve; default is "2".
legendloc
It specifies the location of the legend; default is "bottomright".
legendtxt
It provides the text of the legend; defalut is "c("Method1")".
confi
It provides the option of drawing the confidence bands; default is "N", which means no confidence band is needed; "Y" will report the confidence band.
ptsest
It provides the option of drawing the point estimates; default is "N", which means no point estimates is needed; "Y" will report the point estimates.

References

Yang H., Tang R., Hale M. and Huang J. (2016) A visualization method measuring the performance of biomarkers for guiding treatment decisions Pharmaceutical Statistics, 15(2), 1539-1612

See Also

DuoWPCCurve, TrioWPCCurve

Examples

Run this code
	# Get the estimate of predictiveness curve from npr.wpc.est functions 
	# and print the corresponding predictiveness curve

	npr.object = npr.wpc.est(event=wpcdata$OSday, censor=wpcdata$OScensor, 
	marker=wpcdata$Biomarker1,cutoff=180,method="number.subjt",weights="normal",
	nsub=10,sspeed=1,df=2,confi="NO")

	SoloWPCCurve(npr.object,xlab="Marker",ylab="Survival Rate",
	main="Weighted Predictiveness Curve",ylim=c(0,1),xlim=c(0,100),
	type="l",col="red",lwd=2,confi="N",ptsest="Y")
	
	# Get the estimate of predictiveness curve from cox.wpc.est functions 
	# and print the corresponding predictiveness curve 

	cox.object = cox.wpc.est(event=wpcdata$OSday, censor=wpcdata$OScensor, 
	marker=wpcdata$Biomarker1,cutoff=180,quantile=0.95)
	
	SoloWPCCurve(cox.object,xlab="Marker",ylab="Survival Rate",
	main="Weighted Predictiveness Curve",ylim=c(0,1),xlim=c(0,100),
	type="l",col="red",lwd=2,confi="N",ptsest="Y")

Run the code above in your browser using DataLab