# Get the estimate of predictiveness curve from npr.wpc.est functions
# and print the corresponding predictiveness curve
npr.object = npr.wpc.est(event=wpcdata$OSday, censor=wpcdata$OScensor,
marker=wpcdata$Biomarker1,cutoff=180,method="number.subjt",weights="normal",
nsub=10,sspeed=1,df=2,confi="NO")
SoloWPCCurve(npr.object,xlab="Marker",ylab="Survival Rate",
main="Weighted Predictiveness Curve",ylim=c(0,1),xlim=c(0,100),
type="l",col="red",lwd=2,confi="N",ptsest="Y")
# Get the estimate of predictiveness curve from cox.wpc.est functions
# and print the corresponding predictiveness curve
cox.object = cox.wpc.est(event=wpcdata$OSday, censor=wpcdata$OScensor,
marker=wpcdata$Biomarker1,cutoff=180,quantile=0.95)
SoloWPCCurve(cox.object,xlab="Marker",ylab="Survival Rate",
main="Weighted Predictiveness Curve",ylim=c(0,1),xlim=c(0,100),
type="l",col="red",lwd=2,confi="N",ptsest="Y")
Run the code above in your browser using DataLab