# \donttest{
#Extract the 405 kyr eccentricity cycle from the magnetic susceptibility
#record of the Sullivan core of Pas et al., (2018) and use the Gabor
# uncertainty principle to define the mathematical uncertainty of the
# analysis and use a factor of that standard deviation to define
# boundaries
# perform the CWT
mag_wt <- analyze_wavelet(data = mag,
dj = 1/100,
lowerPeriod = 0.1,
upperPeriod = 254,
verbose = FALSE,
omega_nr = 10)
#Track the 405 kyr eccentricity cycle in a wavelet spectra
#mag_track <- track_period_wavelet(astro_cycle = 405,
# wavelet=mag_wt,
# n.levels = 100,
# periodlab = "Period (metres)",
# x_lab = "depth (metres)",
# palette_name="rainbow",
# color_brewer="grDevices")
#Instead of tracking, the tracked solution data set mag_track_solution is used
mag_track <- mag_track_solution
mag_track_complete <- completed_series(
wavelet = mag_wt,
tracked_curve = mag_track,
period_up = 1.2,
period_down = 0.8,
extrapolate = TRUE,
genplot = FALSE
)
# smooth the tracking of the 405 kyr eccentricity cycle
mag_track_complete <- loess_auto(time_series = mag_track_complete,
genplot = FALSE, print_span = FALSE)
# extract the 405 kyr eccentricity cycle from the wavelet spectrum and use
# the Gabor uncertainty principle to define the mathematical uncertainty of
# the analysis and use a multiple of the derived standard deviation to define boundaries
mag_405_ecc <- extract_signal_standard_deviation(
wavelet = mag_wt,
tracked_cycle_curve = mag_track_complete,
multi = 1,
extract_cycle = 405,
tracked_cycle_period = 405,
add_mean = TRUE,
tune = FALSE,
genplot_uncertainty_wt = FALSE,
genplot_extracted = FALSE,
keep_editable=FALSE,
palette_name="rainbow",
color_brewer="grDevices"
)
# }
Run the code above in your browser using DataLab