
Last chance! 50% off unlimited learning
Sale ends in
Power analysis for t-test based on Monte Carlo simulation
wp.mc.t(n = NULL, R0 = 1e+05, R1 = 1000, mu0 = 0, mu1 = 0,
sd = 1, skewness = 0, kurtosis = 3, alpha = 0.05,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "less", "greater"))
Sample size
Number of replications under the null
Number of replications
Population mean under the null
Population mean under the alternative
Standard deviation
Skewness
kurtosis
Significance level
Type of anlaysis
alternative hypothesis
Zhang, Z., & Yuan, K.-H. (2018). Practical Statistical Power Analysis Using Webpower and R (Eds). Granger, IN: ISDSA Press.
# NOT RUN {
########## Chapter 16. Monte Carlo t-test #############
wp.mc.t(n=20 , mu0=0, mu1=0.5, sd=1, skewness=0,
kurtosis=3, type = c("one.sample"), alternative = c("two.sided"))
wp.mc.t(n=40 , mu0=0, mu1=0.3, sd=1, skewness=1,
kurtosis=6, type = c("paired"), alternative = c("greater"))
wp.mc.t(n=c(15, 15), mu1=c(0.2, 0.5), sd=c(0.2, 0.5),
skewness=c(1, 2), kurtosis=c(4, 6), type = c("two.sample"), alternative = c("less"))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab