Learn R Programming

WeibullR (version 1.0.12)

pivotal3pw: Pivotal (Parametric Bootstrap) Rank Regression Bounds for the 3-Parameter Weibull

Description

Generates bounds across a double-sided confidence interval based on random samples generated on all three parameters of an optimized 3p fit.

Usage

pivotal3pw(x, s=NULL, CI=0.9, unrel=NULL, S=1000, listout=FALSE, show=FALSE)

Arguments

x

A vector of class "numeric" or "integer" with (life-)time observations.

s

An optional vector of suspension data.

CI

A scalar for the double-sided confidence interval of interest. Default = 0.9, for 90

unrel

An optional vector of unreliability values to be used as the descriptive quantiles at which the bounds will be calculated.

S

The number of random samples to be drawn for Monte Carlo simulation.

listout

A logical determining whether a list of development objects will be displayed. *** currently not implemented - only the bounds dataframe is returned.

show

A logigal vector determining whether to display plots of the bounds.

Details

This function is temporarily placed for evaluation and testing. The functionality will be incorporated into pivotal.rr in future CRAN submission.

References

William Q. Meeker and Luis A. Escobar, (1998) "Statistical Methods for Reliability Data", Wiley-Interscience, New York

Robert B. Abernethy, (2008) "The New Weibull Handbook, Fifth Edition"

John I. McCool, (2012) "Using the Weibull Distribution: Reliability, Modeling and Inference"

Examples

Run this code
# NOT RUN {
set.seed<-1234
test50<-rweibull(50, shape=2, scale=100)+25
add25<-rweibull(25, shape=.9, scale=50)+9
test75<-c(test50,add25)
piv75<-pivotal3pw(test75,show=TRUE)
# }

Run the code above in your browser using DataLab