These are generic methods for WormTensor
worm_membership(object, k)worm_clustering(
object,
algorithm = c("MCMI", "OINDSCAL", "CSPA"),
num.iter = 30,
thr = 1e-10,
verbose = FALSE
)
worm_evaluate(object, labels = NULL)
worm_visualize(
object,
out.dir = tempdir(),
algorithm = c("tSNE", "UMAP"),
seed = 1234,
tsne.dims = 2,
tsne.perplexity = 15,
tsne.verbose = FALSE,
tsne.max_iter = 1000,
umap.n_neighbors = 15,
umap.n_components = 2,
silhouette.summary = FALSE
)
WormTensor object
Assumed number of clusters
Dimensional reduction methods
The upper limit of iterations (Default value is 30)
The lower limit of relative change in estimates (Default value is 1E-10)
Control message
Labels for external evaluation
Output directory (default: tempdir())
Arguments passed to set.seed (default: 1234)
Output dimensionality (default: 2)
Perplexity paramete (default: 15)
logical; Whether progress updates should be printed (default: TRUE)
The number of iterations (default: 1000)
The size of local neighborhood (default: 15)
The dimension of the space to embed into (default: 2)
logical; If true a summary of cluster silhouettes are printed.