2-Wasserstein distance linear projections with an \(L_1\) penalty
W2L1(
X,
Y = NULL,
theta = NULL,
penalty = c("lasso", "ols", "mcp", "elastic.net", "selection.lasso", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
"grp.scad.net", "sparse.grp.lasso"),
method = c("projection", "selection.variable", "location.scale", "scale"),
transport.method = transport_options(),
epsilon = 0.05,
OTmaxit = 100,
model.size = NULL,
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = NULL,
alpha = 1,
gamma = 1,
tau = 0.5,
groups = numeric(0),
scale.factor = numeric(0),
penalty.factor = NULL,
group.weights = NULL,
maxit = 500L,
tol = 1e-07,
irls.maxit = 100L,
irls.tol = 0.001,
infimum.maxit = NULL,
display.progress = FALSE
)
Object of class WpProj
An n x p matrix of covariates
An n x s matrix of predictions
optional parameter matrix for selection methods. Should be p x s.
Form of penalty. One of "lasso", "ols", "mcp", "elastic.net","selection.lasso", "scad", "mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp","grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"
"selection.variable" or "projection
Method for calculating the Wasserstein distance. One of "exact", "sinkhorn", "greenkhorn","hilbert"
Penalty parameter for Sinkhorn and Greenkhorn and optimal transport
Maximum iterations for the optimal transport iterations
The maximum number of desired covariates. Defaults to the number of covariates.
Penalty parameter for lasso regression. See oem.
Number of lambda values. See oem.
Minimum lambda ratio for self selected lambda. See oem.
elastic net mixing. See oem.
tuning parameters for SCAD and MCP. See oem.
mixing parameter for sparse group lasso. See oem.
A vector of grouping values. See oem.
Value to standardize the covariates by. Typically, is the standard deviation. Should have length 1 or length same as the number of covariates
Penalty factor for OEM. See oem.
Weights for group lasso. See oem.
Max iteration for OEM. See oem.
Tolerance for OEM. See oem.
IRLS max iterations for OEM. See oem.
IRLS tolerance for OEM. See oem.
Maximum number of iterations alternating optimization and Wasserstein distance calculation. Irrelevant for projection method.
Display intermediate progress?