p-Wasserstein Linear Projections With an \(L_1\) Penalty
WPL1(
X,
Y = NULL,
theta = NULL,
power = 2,
penalty = c("lasso", "ols", "mcp", "elastic.net", "selection.lasso", "scad", "mcp.net",
"scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp", "grp.scad", "grp.mcp.net",
"grp.scad.net", "sparse.grp.lasso"),
model.size = NULL,
lambda = numeric(0),
nlambda = 100L,
lambda.min.ratio = 1e-04,
gamma = 1,
maxit = 500L,
tol = 1e-07,
...
)
object of class WpProj
matrix of covariates
matrix of predictions
optional parameter matrix for selection methods.
power of the Wasserstein distance
Form of penalty. One of "lasso", "ols", "mcp", "elastic.net","selection.lasso", "scad", "mcp.net", "scad.net", "grp.lasso", "grp.lasso.net", "grp.mcp","grp.scad", "grp.mcp.net", "grp.scad.net", "sparse.grp.lasso"
How many coefficients should final model have
penalty parameter
number of lambdas to explore
minimum ratio of max to min lambda
Tuning parameter for SCAD and MCP methods
maximum iterations for optimization
tolerance for convergence
arguments passed to other methods such as Wasserstein distance
W1L1()
, W2L1()
, WInfL1