p-Wasserstein distance projections using simulated annealing
WPSA(
X,
Y = NULL,
theta,
power = 2,
force = NULL,
model.size = NULL,
nvars = NULL,
maxit = 1,
temps = 1000,
max.time = 3600,
const = NULL,
proposal = proposal.fun,
options = list(method = c("selection.variable", "scale", "projection"),
transport.method = transport_options(), energy.distribution = "boltzman",
cooling.schedule = "Geman-Geman", proposal.method = "covariance", epsilon = 0.05,
OTmaxit = 0),
display.progress = FALSE,
parallel = NULL,
calc.theta = TRUE,
xtx = NULL,
xty = NULL,
...
)
An object of class WpProj
Covariate vector
Predictions
Optional matrix of parameters for generating predictions
Power of the Wasserstein distance
Any covariates to force into the model?
Maximum number of coefficients
The number of variables to explore. Should be an integer vector of model sizes. Default is NULL which will explore all models from 1 to model.size
.
Maximum number of iterations
Number of temperatures
Maximum time in seconds to run
Maximum value for simulated annealing distance
Proposal function. There is a default method but can provide your own with parameters xty
, cur
, idx
, force
, d
, method
Options for simulated annealing
Whether to display solver progress. TRUE or FALSE. Default is FALSE.
A foreach::foreach()
backend
Should the model save the linear coefficients? TRUE or FALSE. Default is TRUE
precomputed crossproduct crossprod(X,X)
precomputed crossprod(X, Y)