## Not run:
# # 1) SNP-based ontology
# # 1a) ig.EF (an object of class "igraph" storing as a directed graph)
# g <- xRDataLoader('ig.EF')
# g
#
# # 1b) load GWAS SNPs annotated by EF (an object of class "dgCMatrix" storing a spare matrix)
# anno <- xRDataLoader(RData='GWAS2EF')
#
# # 1c) prepare for ontology and its annotation information
# dag <- xDAGanno(g=g, annotation=anno, path.mode="all_paths",
# true.path.rule=TRUE, verbose=TRUE)
#
# # 1d) calculate pair-wise semantic similarity between 5 randomly chosen terms
# terms <- sample(V(dag)$name, 5)
# sim <- xDAGsim(g=dag, terms=terms, method.term="Schlicker",
# parallel=FALSE)
# sim
#
# ###########################################################
# # 2) Gene-based ontology
# # 2a) ig.MP (an object of class "igraph" storing as a directed graph)
# g <- xRDataLoader('ig.MP')
#
# # 2b) load human genes annotated by MP (an object of class "GS" containing the 'gs' component)
# GS <- xRDataLoader(RData='org.Hs.egMP')
# anno <- GS$gs # notes: This is a list
#
# # 2c) prepare for annotation data
# dag <- xDAGanno(g=g, annotation=anno, path.mode="all_paths",
# true.path.rule=TRUE, verbose=TRUE)
#
# # 2d) calculate pair-wise semantic similarity between 5 randomly chosen terms
# terms <- sample(V(dag)$name, 5)
# sim <- xDAGsim(g=dag, terms=terms, method.term="Schlicker",
# parallel=FALSE)
# sim
# ## End(Not run)
Run the code above in your browser using DataLab