# Let's say that the name of the model is "bivariate.probit", and
# the corresponding describe function is describe.bivariate.probit(),
# which identifies mu1 and mu2 as systematic components, and an
# ancillary parameter rho, which may be parameterized, but is estimated
# as a scalar by default. Let par be the parameter vector (including
# parameters for rho), formulae a user-specified formula, and mydata
# the user specified data frame.
# Acceptable combinations of parse.par() and model.matrix() are as follows:
## Setting up
data(sanction)
formulae <- cbind(import, export) ~ coop + cost + target
fml <- parse.formula(formulae, model = "bivariate.probit")
D <- model.frame(fml, data = sanction)
terms <- attr(D, "terms")
## Intuitive option
Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))
X <- model.matrix(fml, data = D, shape = "stacked", eqn = c("mu1", "mu2")
eta <- X
## Memory-efficient (compact) option (default)
Beta <- parse.par(par, terms, eqn = c("mu1", "mu2"))
X <- model.matrix(fml, data = D, eqn = c("mu1", "mu2"))
eta <- X
## Computationally-efficient (array) option
Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))
X <- model.matrix(fml, data = D, shape = "array", eqn = c("mu1", "mu2"))
eta <- apply(X, 3, '
Run the code above in your browser using DataLab