impute.HMM

0th

Percentile

Imputing log2 ratios using HMM

Imputing log2 ratios using the output of the HMM segmenttation

Keywords
models
Usage
impute.HMM(aCGH.obj, chrominfo = human.chrom.info.Jul03, maxChrom = 23, use.BIC = TRUE)
Arguments
aCGH.obj
Object of class aCGH.
chrominfo
a chromosomal information associated with the mapping of the data
maxChrom
Highest chromosome to impute.
use.BIC
logical parameter; if true impute missing values based on the Hidden Markov Model selected using Bayesian Information Criterion impute missing data, otherwise use AIC.
Details

See details in aCGH discussion.

Value

Computes and returns the imputed log2 ratio matrix of the aCGH object using the output of the Hidden Markov Model segmentation done by invoking find.hmm.states function.

See Also

aCGH, find.hmm.states, impute.lowess.

Aliases
  • impute.HMM
Examples

datadir <- system.file(package = "aCGH")
datadir <- paste(datadir, "/examples", sep="")

clones.info <-
      read.table(file = file.path(datadir, "clones.info.ex.txt"),
                 header = TRUE, sep = "\t", quote="", comment.char="")
log2.ratios <-
      read.table(file = file.path(datadir, "log2.ratios.ex.txt"),
                 header = TRUE, sep = "\t", quote="", comment.char="")
ex.acgh <- create.aCGH(log2.ratios, clones.info)

## Imputing the log2 ratios 

hmm(ex.acgh) <- find.hmm.states(ex.acgh, aic = TRUE, delta = 1.5)
log2.ratios.imputed(ex.acgh) <- impute.HMM(ex.acgh)

Documentation reproduced from package aCGH, version 1.50.0, License: GPL-2

Community examples

Looks like there are no examples yet.