## S3 method for class 'default':
AbsoluteQuantification(data, peptide_method = "top", peptide_topx = 1,
peptide_strictness = "loose", peptide_summary = "mean", transition_topx = 3,
transition_strictness = "loose", transition_summary = "sum", fasta = NA,
model = NA, total_protein_concentration = 1, combine_precursors = FALSE,
consensus_peptides = TRUE, consensus_transitions = TRUE, ...)
## S3 method for class 'AbsoluteQuantification':
cval(object, cval_method = "mc", mcx = 1000, ...)
## S3 method for class 'AbsoluteQuantification':
print(x, ...)
## S3 method for class 'AbsoluteQuantification':
plot(x, ...)
## S3 method for class 'AbsoluteQuantification':
hist(x, ...)
## S3 method for class 'AbsoluteQuantification':
pivot(x, ...)
## S3 method for class 'AbsoluteQuantification':
export(x, file, ...)"run_id",
"protein_id", "protein_intensity", and "concentration"
for quantification on the protein level. For quantification on the peptide
lev"top", "all", "iBAQ", "APEX" or "NSAF" peptide to protein intensity estimation methods."top" methods.peptide_topx should only consider proteins with the minimal peptide
number ("strict") or all ("loose")."top" methods: "mean",
"median", "sum".transition_topx should only consider peptides with the minimal transition
number ("strict") or all ("loose")."mean",
"median", "sum"."iBAQ", "APEX" and "NSAF" peptide to protein intensity estimation methods."APEX" model to useAbsoluteQuantification object."boot" (bootstrapping), "mc" (monte carlo cross-validation), "loo" (leaving-one-out).AbsoluteQuantification object.AbsoluteQuantification.If, on the other hand, the total protein concentration per cell is supplied in proteome-wide experiments, the absolute protein concentrations are estimated by normalization of the MS intensities or spectral counts to this number (Lu et al., 2006).
Ludwig, C., Claassen, M., Schmidt, A. & Aebersold, R. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry. Molecular & Cellular Proteomics 11, M111.013987-M111.013987 (2012).
Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotech 25, 117-124 (2006).
import, ProteinInference, ALF, APEX, apexFeatures, proteotypicdata(UPS2MS)
UPS2_SRM<-head(UPS2_SRM,100) # Remove this line for real applications
data_AbsoluteQuantification <- cval(AbsoluteQuantification(UPS2_SRM),mcx=2)
print(data_AbsoluteQuantification)
plot(data_AbsoluteQuantification)
hist(data_AbsoluteQuantification)
pivot(data_AbsoluteQuantification)Run the code above in your browser using DataLab