Learn R Programming

aLFQ (version 1.3.2)

PeptideInference: Peptide inference for aLFQ import data frame

Description

Peptide inference for aLFQ import data frame.

Usage

## S3 method for class 'default':
PeptideInference(data, transition_topx = 3,
transition_strictness = "strict",transition_summary = "sum",
consensus_proteins = TRUE, consensus_transitions = TRUE, ...)

Arguments

data
a mandatory data frame containing the "protein_id", "peptide_id", "transition_id", "peptide_sequence", "precursor_charge", "transition_intensity" and "concentration"
transition_topx
a positive integer value of the top x transitions to consider for transition to peptide intensity estimation methods.
transition_strictness
whether transition_topx should only consider peptides with the minimal transition number ("strict") or all ("loose").
transition_summary
how to summarize the transition intensities: "mean", "median", "sum".
consensus_proteins
if multiple runs are provided, select identical proteins among all runs.
consensus_transitions
if multiple runs are provided, select identical transitions among all runs.
...
future extensions.

Value

  • A standard aLFQ import data frame on peptide / precursor level.

Details

The PeptideInference module provides functionality to infer peptide / precursor quantities from the measured precursor or fragment intensities or peptide spectral counts.

References

Ludwig, C., Claassen, M., Schmidt, A. & Aebersold, R. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry. Molecular & Cellular Proteomics 11, M111.013987-M111.013987 (2012).

See Also

import, AbsoluteQuantification, ALF, APEX, apexFeatures, proteotypic

Examples

Run this code
data(UPS2MS)

data_PI <- PeptideInference(UPS2_SRM)
print(data_PI)

Run the code above in your browser using DataLab