## S3 method for class 'default':
ProteinInference(data, peptide_method = "top", peptide_topx = 2,
peptide_strictness = "strict",peptide_summary = "mean", transition_topx = 3,
transition_strictness = "strict",transition_summary = "sum", fasta = NA,
apex_model = NA, combine_precursors = FALSE, combine_peptide_sequences = FALSE,
consensus_proteins = TRUE, consensus_peptides = TRUE,
consensus_transitions = TRUE, scampi_method = "LSE",
scampi_iterations = 10, scampi_outliers = FALSE, scampi_outliers_iterations = 2,
scampi_outliers_threshold = 2, ...)"run_id", "protein_id", "protein_intensity", and "concentration" for quantification on the protein level. For quantification on the peptide level, the column"top", "all", "iBAQ", "APEX", "NSAF" or "SCAMPI" peptide to protein intensity estimation methods."top" only:) a positive integer value of the top x peptides to consider for "top" methods."top" only:) whether peptide_topx should only consider proteins with the minimal peptide number ("strict") or all ("loose")."top" and "all" only:) how to summarize the peptide intensities: "mean", "median", "sum".transition_topx should only consider peptides with the minimal transition number ("strict") or all ("loose")."mean", "median", "sum"."iBAQ", "APEX", "NSAF" and "SCAMPI" only:) the path and filename to an amino acid fasta file containing the proteins of interest."APEX" only:) The "APEX" model to use (see APEX).Malmstrom, J. et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762-765 (2009).
Schmidt, A. et al. Absolute quantification of microbial proteomes at different states by directed mass spectrometry. Molecular Systems Biology 7, 1-16 (2011).
Ludwig, C., Claassen, M., Schmidt, A. & Aebersold, R. Estimation of Absolute Protein Quantities of Unlabeled Samples by Selected Reaction Monitoring Mass Spectrometry. Molecular & Cellular Proteomics 11, M111.013987-M111.013987 (2012).
Lu, P., Vogel, C., Wang, R., Yao, X. & Marcotte, E. M. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotech 25, 117-124 (2006).
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337-342 (2011).
Zybailov, B. et al. Statistical Analysis of Membrane Proteome Expression Changes in Saccharomyces c erevisiae. J. Proteome Res. 5, 2339-2347 (2006).
Gerster S., Kwon T., Ludwig C., Matondo M., Vogel C., Marcotte E. M., Aebersold R., Buhlmann P. Statistical approach to protein quantification. Molecular & Cellular Proteomics 13, M112.02445 (2014).
import, AbsoluteQuantification, ALF, APEX, apexFeatures, proteotypic, runScampi, iterateScampidata(UPS2MS)
data_ProteinInference <- ProteinInference(UPS2_SRM)
print(data_ProteinInference)Run the code above in your browser using DataLab