# \donttest{
if (interactive()) {
# Load a small packaged example dataset
adnca <- read.csv(system.file("shiny/data/Dummy_data.csv", package = "aNCA"))
# Subset to a single subject to keep the example fast
subj1 <- unique(adnca$USUBJID)[3]
dose1 <- unique(adnca$DOSNOP)[1]
adnca_sub <- adnca[adnca$USUBJID == subj1 & adnca$DOSNOP == dose1, ]
# Analysis details (minimal example)
method <- "lin up/log down"
params <- c("cmax", "tmax", "auclast", "aucinf.obs")
analytes <- unique(adnca_sub$PARAM)
dosnos <- unique(adnca_sub$ATPTREF)
pcspecs <- unique(adnca_sub$PCSPEC)
auc_data <- data.frame(start_auc = numeric(), end_auc = numeric())
# Build a minimal PKNCA data object and run NCA (kept in \donttest for CRAN safety)
pknca_data <- PKNCA_create_data_object(adnca_sub)
pknca_data <- create_start_impute(pknca_data)
pknca_data <- PKNCA_update_data_object(
pknca_data,
auc_data = auc_data,
method = method,
params = params,
selected_analytes = analytes,
selected_profile = dosnos,
selected_pcspec = pcspecs
)
pknca_res <- PKNCA_calculate_nca(pknca_data)
# Create the lambda slope plot for the example subject
plot <- lambda_slope_plot(
conc_pknca_df = pknca_data$conc$data,
row_values = list(USUBJID = subj1, STUDYID = unique(adnca_sub$STUDYID)[1], DOSNOA = 1),
myres = pknca_res,
r2adj_threshold = 0.7
)
print(plot)
}
# }
Run the code above in your browser using DataLab