Learn R Programming

aVirtualTwins (version 1.0.1)

VT.predict: VT.predict generic function

Description

VT.predict generic function

Usage

VT.predict(rfor, newdata, type)

# S4 method for RandomForest,missing,character VT.predict(rfor, type = "binary")

# S4 method for RandomForest,data.frame,character VT.predict(rfor, newdata, type = "binary")

# S4 method for randomForest,missing,character VT.predict(rfor, type = "binary")

# S4 method for randomForest,data.frame,character VT.predict(rfor, newdata, type = "binary")

# S4 method for train,ANY,character VT.predict(rfor, newdata, type = "binary")

# S4 method for train,missing,character VT.predict(rfor, type = "binary")

Arguments

rfor

random forest model. Can be train, randomForest or RandomForest class.

newdata

Newdata to predict by the random forest model. If missing, OOB predictions are returned.

type

Must be binary or continous, depending on the outcome. Only binary is really available.

Value

vector \(E(Y=1)\)

Methods (by class)

  • rfor = RandomForest,newdata = missing,type = character: rfor(RandomForest) newdata (missing) type (character)

  • rfor = RandomForest,newdata = data.frame,type = character: rfor(RandomForest) newdata (data.frame) type (character)

  • rfor = randomForest,newdata = missing,type = character: rfor(randomForest) newdata (missing) type (character)

  • rfor = randomForest,newdata = data.frame,type = character: rfor(randomForest) newdata (data.frame) type (character)

  • rfor = train,newdata = ANY,type = character: rfor(train) newdata (ANY) type (character)

  • rfor = train,newdata = missing,type = character: rfor(train) newdata (missing) type (character)