Bertsekas, D. P., Tseng, P. (1988) <doi:10.1007/BF02288322> The Relax codes for linear minimum cost network flow problems. Annals of Operations Research, 13, 125-190.
Bertsekas, D. P. (1990) <doi:10.1287/inte.20.4.133> The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces, 20(4), 133-149.
Bertsekas, D. P., Tseng, P. (1994) <http://web.mit.edu/dimitrib/www/Bertsekas_Tseng_RELAX4_!994.pdf> RELAX-IV: A Faster Version of the RELAX Code for Solving Minimum Cost Flow Problems.
Greifer, N. and Stuart, E.A., (2021). <doi:10.1093/epirev/mxab003> Matching methods for confounder adjustment: an addition to the epidemiologist’s toolbox. Epidemiologic Reviews, 43(1), pp.118-129.
Hansen, B. B. and Klopfer, S. O. (2006) <doi:10.1198/106186006X137047> "Optimal full matching and related designs via network flows". Journal of computational and Graphical Statistics, 15(3), 609-627. ('optmatch' package)
Hansen, B. B. (2007) <https://www.r-project.org/conferences/useR-2007/program/presentations/hansen.pdf> Flexible, optimal matching for observational studies. R News, 7, 18-24. ('optmatch' package)
Pimentel, S. D., Yoon, F., & Keele, L. (2015) <doi:10.1002/sim.6593> Variable‐ratio matching with fine balance in a study of the Peer Health Exchange. Statistics in Medicine, 34(30), 4070-4082.
Niknam, B.A. and Zubizarreta, J.R. (2022). <10.1001/jama.2021.20555> Using cardinality matching to design balanced and representative samples for observational studies. JAMA, 327(2), pp.173-174.
Pimentel, S. D., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2015)
<doi:10.1080/01621459.2014.997879> Large, sparse optimal matching with refined covariate balance in an observational study of the health outcomes produced by new surgeons. Journal of the American Statistical Association, 110, 515-527.
Rosenbaum, P. R. and Rubin, D. B. (1985) <doi:10.1080/00031305.1985.10479383> Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39, 33-38.
Rosenbaum, P. R. (1989) <doi:10.1080/01621459.1989.10478868> Optimal matching for observational studies. Journal of the American Statistical Association, 84(408), 1024-1032.
Rosenbaum, P. R., Ross, R. N. and Silber, J. H. (2007) <doi:10.1198/016214506000001059> Minimum distance matched sampling with fine balance in an observational study of treatment for ovarian cancer. Journal of the American Statistical Association, 102, 75-83.
Rosenbaum, P. R. (2020a) <doi:10.1007/978-3-030-46405-9> Design of Observational Studies (2nd Edition). New York: Springer.
Rosenbaum, P. R. (2020b). <doi:10.1146/annurev-statistics-031219-041058> Modern algorithms for matching in observational studies. Annual Review of Statistics and Its Application, 7(1), 143-176.
Rosenbaum, P. R. and Zubizarreta, J. R. (2023). <doi:10.1201/9781003102670>
Optimization Techniques in Multivariate Matching. Handbook of Matching and Weighting Adjustments for Causal Inference, pp.63-86. Boca Raton: FL: Chapman and Hall/CRC Press.
Rosenbaum, P. R. (2025) Introduction to the Theory of Observational Studies.
New York: Springer.
Rubin, D. B. (1980) <doi:10.2307/2529981> Bias reduction using Mahalanobis-metric matching. Biometrics, 36, 293-298.
Stuart, E.A., (2010). <doi:10.1214/09-STS313> Matching methods for causal inference: A review and a look forward. Statistical Science, 25(1), 1-21.
Yang, D., Small, D. S., Silber, J. H. and Rosenbaum, P. R. (2012) <doi:10.1111/j.1541-0420.2011.01691.x> Optimal matching with minimal deviation from fine balance in a study of obesity and surgical outcomes. Biometrics, 68, 628-636.
Yu, Ruoqi, and P. R. Rosenbaum. <doi:10.1111/biom.13098> Directional penalties for optimal matching in observational studies. Biometrics 75, no. 4 (2019): 1380-1390.
Yu, R., Silber, J. H., & Rosenbaum, P. R. (2020) <doi:10.1214/19-STS699> Matching methods for observational studies derived from large administrative databases. Statistical Science, 35(3), 338-355.
Yu, R. (2021) <doi:10.1111/biom.13374> Evaluating and improving a matched comparison of antidepressants and bone density. Biometrics, 77(4), 1276-1288.
Yu, R. (2023) <doi:10.1111/biom.13771> How well can fine balance work for covariate balancing? Biometrics. 79(3), 2346-2356.
Zhang, B., D. S. Small, K. B. Lasater, M. McHugh, J. H. Silber, and P. R. Rosenbaum (2023) <doi:10.1080/01621459.2021.1981337> Matching one sample according to two criteria in observational studies. Journal of the American Statistical Association, 118, 1140-1151.
Zubizarreta, J.R., 2012. <doi:10.1080/01621459.2012.703874>Using mixed integer programming for matching in an observational study of kidney failure after surgery. Journal of the American Statistical Association, 107(500), pp.1360-1371.
Zubizarreta, J. R., Reinke, C. E., Kelz, R. R., Silber, J. H. and Rosenbaum, P. R. (2011) <doi:10.1198/tas.2011.11072> Matching for several sparse nominal variables in a case control study of readmission following surgery. The American Statistician, 65(4), 229-238.
Zubizarreta, J.R., Stuart, E.A., Small, D.S. and Rosenbaum, P.R. eds. (2023).
<doi:10.1201/9781003102670> Handbook of Matching and Weighting Adjustments for Causal Inference. Boca Raton: FL: Chapman and Hall/CRC Press.