# NOT RUN {
# create temp files to save to
tmp_filename_csv <- tempfile(fileext = '.csv')
tmp_filename_rda <- tempfile(fileext = '.Rda')
# grab built-in data
data <- adnimerge %>% dplyr::filter(VISCODE == 'bl')
# fit model
model <- data %>% aba_model() %>%
set_groups(everyone()) %>%
set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>%
set_predictors(
PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl,
c(PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl)
) %>%
set_stats('glm') %>%
fit()
# summarise model
model_summary <- model %>% summary()
# save model summary to file as table
model_summary %>% aba_write(tmp_filename_csv)
# save model summary to file as raw long-form results
model_summary %>% aba_write(tmp_filename_csv, format = 'raw')
# save model summary as an object which can be loaded back into memory
model_summary %>% aba_write(tmp_filename_rda, format = 'object')
# load summary back to file to show it works
model_summary2 <- aba_read(tmp_filename_rda)
print(model_summary2)
# delete temp files
removed <- file.remove(tmp_filename_csv)
removed <- file.remove(tmp_filename_rda)
# }
Run the code above in your browser using DataLab