# NOT RUN {
data <- adnimerge %>% dplyr::filter(VISCODE == 'bl')
# fit lm model with continuous outcome variables
model <- data %>% aba_model() %>%
set_groups(
everyone(),
DX_bl %in% c('MCI', 'AD')
) %>%
set_outcomes(CDRSB_bl, MMSE_bl) %>%
set_predictors(
PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl,
c(PLASMA_ABETA_bl, PLASMA_PTAU181_bl, PLASMA_NFL_bl)
) %>%
set_covariates(AGE, GENDER, EDUCATION) %>%
set_stats(
stat_lm(std.beta = TRUE)
) %>%
fit()
# summarise model
model_summary <- model %>% summary()
# plot results
fig1 <- model_summary %>% aba_plot_coef()
fig2 <- model_summary %>% aba_plot_metric()
# }
Run the code above in your browser using DataLab