Learn R Programming

abn (version 1.0)

ex0.dag.data: Synthetic validation data set for use with abn library examples

Description

300 observations simulated from a DAG with 10 binary variables, 10 gaussian variables and 10 poisson variables.

Usage

ex0.dag.data

Arguments

Format

A data frame, binary variables are factors. The relevant formulas are given below (note these do not give parameter estimates just the form of the relationships, e.g. logit()=1 means a logit link function and comprises of only an intercept term).
b1
binary, logit()=1
b2
binary, logit()=1
b3
binary, logit()=1
b4
binary, logit()=1
b5
binary, logit()=1
b6
binary, logit()=1
b7
binary, logit()=1
b8
binary, logit()=1
b9
binary, logit()=1
b10
binary, logit()=1
g1
gaussian, identity()=1
g2
gaussian, identity()=1
g3
gaussian, identity()=1
g4
gaussian, identity()=1
g5
gaussian, identity()=1
g6
gaussian, identity()=1
g7
gaussian, identity()=1
g8
gaussian, identity()=1
g9
gaussian, identity()=1
g10
gaussian, identity()=1
p1
poisson, log()=1
p2
poisson, log()=1
p3
poisson, log()=1
p4
poisson, log()=1
p5
poisson, log()=1
p6
poisson, log()=1
p7
poisson, log()=1
p8
poisson, log()=1
p9
poisson, log()=1
p10
poisson, log()=1

Examples

Run this code
## Not run: 
# ## This data set was generated using the following code:
#  datasize<-300;
# tmp<-c(rep("y",as.integer(datasize/2)),rep("n",as.integer(datasize/2)));
# set.seed(1);
# 
# ex0.dag.data<-data.frame(b1=sample(tmp,size=datasize,replace=TRUE),
#                 b2=sample(tmp,size=datasize,replace=TRUE),
#                 b3=sample(tmp,size=datasize,replace=TRUE),
#                 b4=sample(tmp,size=datasize,replace=TRUE),
#                 b5=sample(tmp,size=datasize,replace=TRUE),
#                 b6=sample(tmp,size=datasize,replace=TRUE),
#                 b7=sample(tmp,size=datasize,replace=TRUE),
#                 b8=sample(tmp,size=datasize,replace=TRUE),
#                 b9=sample(tmp,size=datasize,replace=TRUE),
#                 b10=sample(tmp,size=datasize,replace=TRUE),
#                 g1=rnorm(datasize,mean=0,sd=1),
#                 g2=rnorm(datasize,mean=0,sd=1),
#                 g3=rnorm(datasize,mean=0,sd=1),
#                 g4=rnorm(datasize,mean=0,sd=1),
#                 g5=rnorm(datasize,mean=0,sd=1),
#                 g6=rnorm(datasize,mean=0,sd=1),
#                 g7=rnorm(datasize,mean=0,sd=1),
#                 g8=rnorm(datasize,mean=0,sd=1),
#                 g9=rnorm(datasize,mean=0,sd=1),
#                 g10=rnorm(datasize,mean=0,sd=1),
#                 p1=rpois(datasize,lambda=10),
#                 p2=rpois(datasize,lambda=10),
#                 p3=rpois(datasize,lambda=10),
#                 p4=rpois(datasize,lambda=10),
#                 p5=rpois(datasize,lambda=10),
#                 p6=rpois(datasize,lambda=10),
#                 p7=rpois(datasize,lambda=10),
#                 p8=rpois(datasize,lambda=10),
#                 p9=rpois(datasize,lambda=10),
#                 p10=rpois(datasize,lambda=10)
#                 );
# ## End(Not run)

Run the code above in your browser using DataLab