if (FALSE) {
##############################################
## example 1: use built-in simulated data set
##############################################
## this data comes with abn see ?ex1.dag.data
mydat <- ex1.dag.data
## setup distribution list for each node
mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial",
p2="poisson", b3="binomial", g2="gaussian", b4="binomial",
b5="binomial", g3="gaussian")
## Build cache may take some minutes for buildScoreCache()
mycache <- buildScoreCache(data.df=mydat, data.dists=mydists,
max.parents=2);
# now peform 10 greedy searches
heur.res <- searchHillClimber(score.cache=mycache,
num.searches=10, timing.on=FALSE)
plotAbn(dag=heur.res$consensus, data.dists=mydists)
###########################
## example 2 - glmm example
###########################
## this data comes with abn see ?ex1.dag.data
mydat <- ex3.dag.data[,c(1:4,14)]
mydists <- list(b1="binomial", b2="binomial", b3="binomial",
b4="binomial")
## This takes a few seconds
# mycache.mixed <- buildScoreCache(data.df=mydat, data.dists=mydists,
# group.var="group", cor.vars=c("b1","b2","b3","b4"),
# max.parents=2, which.nodes=c(1:4))
## Now peform 50 greedy searches
# heur.res <- searchHillClimber(score.cache=mycache.mixed, num.searches=50,
# timing.on=FALSE)
## Plot the majority consensus network
# plotAbn(dag=heur.res$consensus, data.dists=mydists)
}
Run the code above in your browser using DataLab