Learn R Programming

acc (version 1.1.7)

plotAcc: Plots accelerometer data

Description

Plots accelerometer data. This function receives summary object from function accsummary.

Usage

plotAcc(object,markbouts)

Arguments

object
An object returned from either the function accsummary.
markbouts
Whether to mark bouts. If markbout='TRUE' a bar along the time axis will indicate whether the epoch was counted as in bout or not. Default is false.

Value

  • A plot is returned.

Examples

Run this code
##
## Example: Simulate a dataset for two days, for an individual with low MVPA level.
##
mvpaLowData <- simAcc(minutes=(60*24*2),mvpaLevel='low')
summary <- accSummary(data=mvpaLowData)
summary$validDates
plotAcc(summary,markbouts='FALSE')

##
## Example: Simulate a dataset for two days, for an individual with moderate MVPA level.
##
mvpaModData <- simAcc(minutes=(60*24*2),mvpaLevel='moderate')
summary <- accSummary(data=mvpaModData, tri='FALSE', axis=NULL,
             spuriousDef=20, nonwearDef=60, minWear=600, 
             patype='MVPA',pacut=c(1952,Inf), boutsize=10, 
             tolerance='TRUE', returnbout='TRUE')
summary$validDates
plotAcc(summary,markbouts='FALSE')

##
## Example: Simulate a dataset for two days, for an individual with high MVPA level.
##
mvpaHighData <- simAcc(minutes=(60*24*2),mvpaLevel='high')
summary <- accSummary(data=mvpaHighData, tri='FALSE', axis=NULL,
             spuriousDef=20, nonwearDef=60, minWear=600, 
             patype='MVPA',pacut=c(1952,Inf), boutsize=10, 
             tolerance='TRUE', returnbout='TRUE')
summary$validDates

plotAcc(summary,markbouts='FALSE')


##
## Example: Simulate a tri-axial dataset for five days.
##
library(acc)
  library(mhsmm)
  seedset=1234
  minutes=(60*24*5)
  randomTime <- seq(ISOdate(2015,1,1),ISOdate(2020,1,1),"min")
  J <- 3; initial <- rep(1/J, J)
  P <- matrix(rep(NA,9),byrow='TRUE',nrow=J)

  P1 <- matrix(c(0.95, 0.04, 0.01, 
                  0.09, 0.9, 0.01, 
                  0.1, 0.2, 0.7), byrow='TRUE',nrow = J)

  b <- list(mu = c(0, 30, 2500), sigma = c(0, 30, 1000))
  model1 <- hmmspec(init = initial, trans = P1, parms.emis = b,dens.emis = dnorm.hsmm)
  x <- simulate.hmmspec(model1, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)

  seedset=12345
  P2 <- matrix(c(0.95, 0.04, 0.01, 
                  0.09, 0.8, 0.11, 
                  0.1, 0.1, 0.8), byrow='TRUE',nrow = J)
  model2 <- hmmspec(init = initial, trans = P2, parms.emis = b,dens.emis = dnorm.hsmm)
  y <- simulate.hmmspec(model2, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)

  seedset=123456
  P3 <- matrix(c(0.95, 0.04, 0.01, 
                  0.09, 0.8, 0.11, 
                  0.1, 0.1, 0.8), byrow='TRUE',nrow = J)
  model3 <- hmmspec(init = initial, trans = P3, parms.emis = b,dens.emis = dnorm.hsmm)
  z <- simulate.hmmspec(model3, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)

  counts <- data.frame(TimeStamp = randomTime[1:minutes], x=x$x, y=y$x, z=z$x)
  summary <- accSummary(data=counts, tri='TRUE', axis='vm',
                        spuriousDef=20, nonwearDef=60, minWear=600, 
                        patype='MVPA',pacut=c(1952,Inf), boutsize=10, tolerance='TRUE',
                        returnbout='TRUE')
summary$validDates

plotAcc(summary,markbouts='FALSE')

Run the code above in your browser using DataLab