## Not run:
# ##
# ## Example: Simulate a dataset for two days, for an individual with low MVPA level.
# ##
# mvpaLowData <- simAcc(timelength=(60*24*2),paLevel='low')
# summary <- accSummary(data=mvpaLowData)
# summary$validDates
# plotAcc(summary,markbouts='FALSE')
#
# ##
# ## Example: Simulate a dataset for two days, for an individual with moderate MVPA level.
# ##
# mvpaModData <- simAcc(timelength=(60*24*2),paLevel='moderate')
# summary <- accSummary(data=mvpaModData, tri='FALSE', axis=NULL,
# spuriousDef=20, nonwearDef=60, minWear=600,
# patype='MVPA',pacut=c(1952,Inf), boutsize=10,
# tolerance='TRUE', returnbout='TRUE')
# summary$validDates
# plotAcc(summary,markbouts='FALSE')
#
# ##
# ## Example: Simulate a dataset for two days, for an individual with high MVPA level.
# ##
# mvpaHighData <- simAcc(timelength=(60*24*2),paLevel='high')
# summary <- accSummary(data=mvpaHighData, tri='FALSE', axis=NULL,
# spuriousDef=20, nonwearDef=60, minWear=600,
# patype='MVPA',pacut=c(1952,Inf), boutsize=10,
# tolerance='TRUE', returnbout='TRUE')
# summary$validDates
# plotAcc(summary,markbouts='FALSE')
#
#
# ##
# ## Example: Simulate a tri-axial dataset for five days.
# ##
# library(acc)
# library(mhsmm)
# seedset=1234
# minutes=(60*24*5)
# randomTime <- seq(ISOdate(2015,1,1),ISOdate(2020,1,1),"min")
# J <- 3; initial <- rep(1/J, J)
# P <- matrix(rep(NA,9),byrow='TRUE',nrow=J)
#
# P1 <- matrix(c(0.95, 0.04, 0.01,
# 0.09, 0.9, 0.01,
# 0.1, 0.2, 0.7), byrow='TRUE',nrow = J)
#
# b <- list(mu = c(0, 30, 2500), sigma = c(0, 30, 1000))
# model1 <- hmmspec(init = initial, trans = P1, parms.emis = b,dens.emis = dnorm.hsmm)
# x <- simulate.hmmspec(model1, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)
#
# seedset=12345
# P2 <- matrix(c(0.95, 0.04, 0.01,
# 0.09, 0.8, 0.11,
# 0.1, 0.1, 0.8), byrow='TRUE',nrow = J)
# model2 <- hmmspec(init = initial, trans = P2, parms.emis = b,dens.emis = dnorm.hsmm)
# y <- simulate.hmmspec(model2, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)
#
# seedset=123456
# P3 <- matrix(c(0.95, 0.04, 0.01,
# 0.09, 0.8, 0.11,
# 0.1, 0.1, 0.8), byrow='TRUE',nrow = J)
# model3 <- hmmspec(init = initial, trans = P3, parms.emis = b,dens.emis = dnorm.hsmm)
# z <- simulate.hmmspec(model3, nsim = (minutes), seed = seedset, rand.emis = rnorm.hsmm)
#
# counts <- data.frame(TimeStamp = randomTime[1:minutes], x=x$x, y=y$x, z=z$x)
# summary <- accSummary(data=counts, tri='TRUE', axis='vm',
# spuriousDef=20, nonwearDef=60, minWear=600,
# patype='MVPA',pacut=c(1952,Inf), boutsize=10, tolerance='TRUE',
# returnbout='TRUE')
# summary$validDates
#
# plotAcc(summary,markbouts='FALSE')
# ## End(Not run)
Run the code above in your browser using DataLab