## Single time point analysis for 500 genes with 10 treatment
## replicates and 10 control replicates
n <- 500; p <- 20; p1 <- 10
des <- c(rep(1, p1), rep(2, (p-p1)))
mu <- as.matrix(rexp(n, rate=1))
Z <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
### 5 up regulated genes
Z[1:5,1:p1] <- Z[1:5,1:p1] + 5
### 10 down regulated genes
Z[6:15,(p1+1):p] <- Z[6:15,(p1+1):p] + 4
resSTP <- stp(Z, des)
resSTP
plot(resSTP)
## Time course analysis for 500 genes with 10 treatment
## replicates and 10 control replicates
tPts <- c("h0", "12h", "24h")
n <- 500; p <- 20; p1 <- 10
Z <- vector("list", 3)
des <- vector("list", 3)
for(tp in 1:3){ des[[tp]] <- c(rep(1, p1), rep(2, (p-p1))) }
mu <- as.matrix(rexp(n, rate=1))
### h0 time point (no diff. expr.)
Z[[1]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
### h12 time point (diff. expr. begins)
Z[[2]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
#### Up regulated genes
Z[[2]][1:5,1:p1] <- Z[[2]][1:5,1:p1] +
matrix(runif(5*p1, 1, 3), nrow=5)
#### Down regulated genes
Z[[2]][6:15,(p1+1):p] <- Z[[2]][6:15,(p1+1):p] +
matrix(runif(10*(p-p1), 1, 2), nrow=10)
### h24 time point (maximum differential expression)
Z[[3]] <- t(apply(mu, 1, function(mui) rnorm(p, mean=mui, sd=1)))
#### 5 up regulated genes
Z[[3]][1:5,1:p1] <- Z[[3]][1:5,1:p1] + 5
#### 10 down regulated genes
Z[[3]][6:15,(p1+1):p] <- Z[[3]][6:15,(p1+1):p] + 4
resTC <- tc(Z, des)
resTC
summary(resTC)
plot(resTC)
Run the code above in your browser using DataLab