Last chance! 50% off unlimited learning
Sale ends in
Density function, distribution function, quantile function, random generation,
raw moments and limited moments for the Generalized Pareto
distribution with parameters shape1
, shape2
and
scale
.
dgenpareto(x, shape1, shape2, rate = 1, scale = 1/rate,
log = FALSE)
pgenpareto(q, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
qgenpareto(p, shape1, shape2, rate = 1, scale = 1/rate,
lower.tail = TRUE, log.p = FALSE)
rgenpareto(n, shape1, shape2, rate = 1, scale = 1/rate)
mgenpareto(order, shape1, shape2, rate = 1, scale = 1/rate)
levgenpareto(limit, shape1, shape2, rate = 1, scale = 1/rate,
order = 1)
dgenpareto
gives the density,
pgenpareto
gives the distribution function,
qgenpareto
gives the quantile function,
rgenpareto
generates random deviates,
mgenpareto
gives the
levgenpareto
gives the
Invalid arguments will result in return value NaN
, with a warning.
vector of quantiles.
vector of probabilities.
number of observations. If length(n) > 1
, the length is
taken to be the number required.
parameters. Must be strictly positive.
an alternative way to specify the scale.
logical; if TRUE
, probabilities/densities
logical; if TRUE
(default), probabilities are
order of the moment.
limit of the loss variable.
Vincent Goulet vincent.goulet@act.ulaval.ca and Mathieu Pigeon
The Generalized Pareto distribution with parameters shape1
shape2
scale
gamma()
and defined in its help.)
The Generalized Pareto is the distribution of the random variable
The Generalized Pareto distribution has the following special cases:
A Pareto distribution when shape2 ==
1
;
An Inverse Pareto distribution when
shape1 == 1
.
The
The
Embrechts, P., Klüppelberg, C. and Mikisch, T. (1997), Modelling Extremal Events for Insurance and Finance, Springer.
Kleiber, C. and Kotz, S. (2003), Statistical Size Distributions in Economics and Actuarial Sciences, Wiley.
Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2012), Loss Models, From Data to Decisions, Fourth Edition, Wiley.
exp(dgenpareto(3, 3, 4, 4, log = TRUE))
p <- (1:10)/10
pgenpareto(qgenpareto(p, 3, 3, 1), 3, 3, 1)
qgenpareto(.3, 3, 4, 4, lower.tail = FALSE)
## variance
mgenpareto(2, 3, 2, 1) - mgenpareto(1, 3, 2, 1)^2
## case with shape1 - order > 0
levgenpareto(10, 3, 3, scale = 1, order = 2)
## case with shape1 - order < 0
levgenpareto(10, 1.5, 3, scale = 1, order = 2)
Run the code above in your browser using DataLab