Adaptive Huber mean estimator from a data sample, with robustification parameter \(\tau\) determined by a tuning-free principle.
Usage
adaHuber.mean(X, epsilon = 1e-04, iteMax = 500)
Arguments
X
An \(n\)-dimensional data vector.
epsilon
(optional) The tolerance level in the iterative estimation procedure, iteration will stop when \(|\mu_new - \mu_old| < \epsilon\). The defalut value is 1e-4.
iteMax
(optional) Maximum number of iterations. Default is 500.
Value
A list including the following terms will be returned:
mu
The Huber mean estimator.
tau
The robustness parameter determined by the tuning-free principle.
iteration
The number of iterations in the estimation procedure.
References
Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist., 35, 73<U+2013>101.
Wang, L., Zheng, C., Zhou, W. and Zhou, W.-X. (2021). A new principle for tuning-free Huber regression. Stat. Sinica, 31, 2153-2177.