# NOT RUN {
library(fda)
?growth
str(growth)
hgtm <- growth$hgtm
hgtf <- growth$hgtf[,1:39]
# Create array:
nvars <- 2
data.array <- array(0, dim = c(dim(hgtm), nvars))
data.array[,,1] <- as.matrix(hgtm)
data.array[,,2] <- as.matrix(hgtf)
rownames(data.array) <- 1:nrow(hgtm)
colnames(data.array) <- colnames(hgtm)
str(data.array)
# Create basis:
nbasis <- 10
basis_fd <- create.bspline.basis(c(1,nrow(hgtm)), nbasis)
PM <- eval.penalty(basis_fd)
# Make fd object:
temp_points <- 1:nrow(hgtm)
temp_fd <- Data2fd(argvals = temp_points, y = data.array, basisobj = basis_fd)
X <- array(0, dim = c(dim(t(temp_fd$coefs[,,1])), nvars))
X[,,1] <- t(temp_fd$coef[,,1])
X[,,2] <- t(temp_fd$coef[,,2])
# Standardize the variables:
Xs <- X
Xs[,,1] <- scale(X[,,1])
Xs[,,2] <- scale(X[,,2])
x1 <- t(Xs[,,1])
for (i in 2:nvars) {
x12 <- t(Xs[,,i])
x1 <- rbind(x1, x12)
}
data_all <- t(x1)
num_pts <- ncol(data_all) / nvars
range <- 3
outl <- do_clean_multiv(t(data_all), num_pts, range, out_perc, nbasis, nvars)
outl
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab