Gauss Mutation is an operator made by adding randomly selected values from a normal distribution with a mean of 0 and a standard deviation of sigma to a randomly selected gene in the chromosome (Michalewicz, 1995; Back et.al., 1991; Fogel, 1995).
This operator is used for value encoded (integer or real number) chromosomes.
gaussmut(y, mutsdy, ...)
A vector. Chromosome of the offspring
A vector. Vector of standard deviations of genes
Further arguments passed to or from other methods.
A vector. Chromosome of the offspring
The number of the mutated gene.
Michalewicz, Z. (1995). Genetic algorithms, numerical optimizations and constraints. In Proc. of the 6th. Int. Conf. on Genetic Algorithms, pp. 151-158. Morgan Kaufmann.
Back, T., Hoffmeister, F. and Schwefel, H.F. (1991). A survey of elolution strategies. In Proc. of the 4th. Int. Conf. on Genetic Algorithms (eds. R.K. Belew and L.B. Booker), pp. 2-9. Morgan Kaufmann.
Fogel D.B. (1995). Evolutionary computation. Toward a new philosophy of machine intellegence. Piscataway, NJ: IEEE Press.
mutate
,
bitmut
,
randmut
,
randmut2
,
randmut3
,
randmut4
,
unimut
,
boundmut
,
nunimut
,
nunimut2
,
powmut
,
powmut2
,
gaussmut2
,
gaussmut3
,
bsearchmut1
,
bsearchmut2
,
swapmut
,
invmut
,
shufmut
,
insmut
,
dismut
,
invswapmut
,
insswapmut
,
invdismut
# NOT RUN {
mutsdy = c(1, 1.5, 1.01, 0.4, 1.5, 1.2)
offspring = c(8, 6, 4, 1, 3, 7)
set.seed(12)
gaussmut(offspring)
# }
Run the code above in your browser using DataLab