50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

adaptTest (version 1.1)

getpar: Function to calculate the parameter that specifies the conditional error function running through a given point

Description

This function calculates the parameter that specifies the conditional error function running through a given point (p1,p2), based on a chosen family of conditional error functions.

Usage

getpar(typ, p1 = NA, p2 = p1, c = FALSE)

Value

getpar returns the parameter (either α2 or c, depending on the chosen parameterization) that specifies the conditional error function running through (p1,p2).

Arguments

typ

type of test: "b" for Bauer and Koehne (1994), "l" for Lehmacher and Wassmer (1999), "v" for Vandemeulebroecke (2006) and "h" for the horizontal conditional error function

p1

the p-value p1 of the test after the first stage

p2

the p-value p2 of the test after the second stage, defaults to p1

c

logical determining whether the parameter α2 or the parameter c is returned (α2 is the default).

Author

Marc Vandemeulebroecke

Details

See parconv for more information on the two alternative parameterizations by α2 and c.

References

Bauer, P., Koehne, K. (1994). Evaluation of experiments with adaptive interim analyses. Biometrics 50, 1029-1041.

Lehmacher, W., Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics 55, 1286-1290.

Vandemeulebroecke, M. (2006). An investigation of two-stage tests. Statistica Sinica 16, 933-951.

See Also

adaptTest package description, parconv, CEF

Examples

Run this code
## Plot the conditional error function of the Lehmacher-Wassmer (1999)
##  type that runs through (p1,p2)=(0.3,0.7)
alpha2 <- getpar(typ="l", p1=0.3, p2=0.7)
plotCEF(typ="l", a2=alpha2, add=FALSE)

## Other ways of doing the same as above
plotCEF(typ="l", p1=0.3, p2=0.7, add=FALSE)
plot(CEF(typ="l", p1=0.3, p2=0.7), xlim=0:1)

Run the code above in your browser using DataLab