Usage
sim.adaptiveGMRF(data, hrf, approximate = FALSE, K = 500, a = 1, b = 1, c = 1, d = 1, nu = 1, block = 1, burnin = 1, thin = 1)
Arguments
data
simulated fMRI-data, needs to be an array of
dimension (20 x 20 x T).
hrf
haemodynamic response function, needs to be a
vector of length T.
approximate
logical, if TRUE then the
approximate case is chosen. Default is FALSE.
K
scalar, length of the MCMC path, hence iteration
steps.
a
scalar, shape hyperparameter of the
inverse-gamma distribution of the variance parameter
($\sigma_i^2$).
b
scalar, scale hyperparameter of the inverse
gamma distribution of the variance parameter
($\sigma_i^2$).
c
scalar, shape hyperparameter of the inverse
gamma distribution of the precision parameter
($\tau$).
d
scalar, scale hyperparameter of the inverse
gamma distribution of the precision parameter
($\tau$).
nu
scalar, shape and scale hyperparameter of the
gamma distribution of the interaction weights
($w_{ij}$).
block
scalar, when approximate==TRUE then a
block of weights is updated at a time.
burnin
scalar, defining the first iteration steps
which should be omitted from MCMC path.
thin
scalar, only every thin step of MCMC
path is saved to output.