Learn R Programming

ade4 (version 1.01)

cca: Canonical Correspondence Analysis

Description

Performs a Canonical Correspondence Analysis.

Usage

cca(sitspe, sitenv, scannf = TRUE, nf = 2)

Arguments

sitspe
a data frame for correspondence analysis, typically a sites x species table
sitenv
a data frame containing variables, typically a sites x environmental variables table
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes

Value

  • returns an object of class 'pcaiv'. See pcaiv

References

Ter Braak, C. J. F. (1986) Canonical correspondence analysis : a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167--1179. Ter Braak, C. J. F. (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 69, 69--77. Chessel, D., Lebreton J. D. and Yoccoz N. (1987) Propri�t�s de l'analyse canonique des correspondances. Une utilisation en hydrobiologie. Revue de Statistique Appliqu�e, 35, 55--72.

See Also

cca in the package vegan

Examples

Run this code
data(rpjdl)
millog <- log(rpjdl$mil + 1)
iv1 <- cca(rpjdl$fau, millog, scan = FALSE)
plot(iv1)

# analysis with c1 - as - li -ls
# projections of inertia axes on PCAIV axes
s.corcircle(iv1$as)

# Species positions
s.label(iv1$c1, 2, 1, clab = 0.5, xlim = c(-4,4))
# Sites positions at the weighted mean of present species
s.label(iv1$ls, 2, 1, clab = 0, cpoi = 1, add.p = TRUE)

# Prediction of the positions by regression on environmental variables
s.match(iv1$ls, iv1$li, 2, 1, clab = 0.5)

# analysis with fa - l1 - co -cor
# canonical weights giving unit variance combinations
s.arrow(iv1$fa)

# sites position by environmental variables combinations
# position of species by averaging
s.label(iv1$l1, 2, 1, clab = 0, cpoi = 1.5)
s.label(iv1$co, 2, 1, add.plot = TRUE)

s.distri(iv1$l1, rpjdl$fau, 2, 1, cell = 0, csta = 0.33)
s.label(iv1$co, 2, 1, clab = 0.75, add.plot = TRUE)

# coherence between weights and correlations
par(mfrow = c(1,2))
s.corcircle(iv1$cor, 2, 1)
s.arrow(iv1$fa, 2, 1)
par(mfrow = c(1,1))

Run the code above in your browser using DataLab