data(rpjdl)
millog <- log(rpjdl$mil + 1)
iv1 <- cca(rpjdl$fau, millog, scan = FALSE)
plot(iv1)
# analysis with c1 - as - li -ls
# projections of inertia axes on PCAIV axes
s.corcircle(iv1$as)
# Species positions
s.label(iv1$c1, 2, 1, clab = 0.5, xlim = c(-4,4))
# Sites positions at the weighted mean of present species
s.label(iv1$ls, 2, 1, clab = 0, cpoi = 1, add.p = TRUE)
# Prediction of the positions by regression on environmental variables
s.match(iv1$ls, iv1$li, 2, 1, clab = 0.5)
# analysis with fa - l1 - co -cor
# canonical weights giving unit variance combinations
s.arrow(iv1$fa)
# sites position by environmental variables combinations
# position of species by averaging
s.label(iv1$l1, 2, 1, clab = 0, cpoi = 1.5)
s.label(iv1$co, 2, 1, add.plot = TRUE)
s.distri(iv1$l1, rpjdl$fau, 2, 1, cell = 0, csta = 0.33)
s.label(iv1$co, 2, 1, clab = 0.75, add.plot = TRUE)
# coherence between weights and correlations
par(mfrow = c(1,2))
s.corcircle(iv1$cor, 2, 1)
s.arrow(iv1$fa, 2, 1)
par(mfrow = c(1,1))
Run the code above in your browser using DataLab