Learn R Programming

ade4 (version 1.01)

coinertia: Coinertia Analysis

Description

The coinertia analysis performs a double inertia analysis of two arrays.

Usage

coinertia(dudiX, dudiY, scannf = TRUE, nf = 2)
plot.coinertia (x, xax = 1, yax = 2, ...) 
print.coinertia (x, ...) 
summary.coinertia (object, ...)

Arguments

dudiX
a duality diagramproviding from one of the functions dudi.coa, dudi.pca, ...
dudiY
a duality diagram providing from one of the functions dudi.coa, dudi.pca, ...
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
x, object
an object of class 'coinertia'
xax, yax
the numbers of the x-axis and the y-axis
...
further arguments passed to or from other methods

Value

  • Returns a list of class 'coinertia', sub-class 'dudi' containing:
  • callcall
  • rankrank
  • nfa numeric value indicating the number of kept axes
  • RVa numeric value, the RV coefficient
  • eiga numeric vector with all the eigenvalues
  • lwa numeric vector with the rows weigths (crossed array)
  • cwa numeric vector with the columns weigths (crossed array)
  • taba crossed array (CA)
  • liY col = CA row: coordinates
  • l1Y col = CA row: normed scores
  • coX col = CA column: coordinates
  • c1X col = CA column: normed scores
  • lXthe row coordinates (X)
  • mXthe normed row scores (X)
  • lYthe row coordinates (Y)
  • mYthe normed row scores (Y)
  • aXthe axis onto co-inertia axis (X)
  • aYthe axis onto co-inertia axis (Y)

WARNING

IMPORTANT : dudi1 and dudi2 must have identical row weights.

References

Dol�dec, S. and Chessel, D. (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshwater Biology, 31, 277--294.

Examples

Run this code
data(doubs)
dudi1 <- dudi.pca(doubs$mil, scale = TRUE, scan = FALSE, nf = 3)
dudi2 <- dudi.pca(doubs$poi, scale = FALSE, scan = FALSE, nf = 2)
coin1 <- coinertia(dudi1,dudi2, scan = FALSE, nf = 2)
s.arrow(coin1$l1, clab = 0.7)

s.arrow(coin1$c1, clab = 0.7)

par(mfrow = c(1,2))
s.corcircle(coin1$aX)
s.corcircle(coin1$aY)
par(mfrow = c(1,1))
 
coin1
summary(coin1)
plot(coin1)

Run the code above in your browser using DataLab