Learn R Programming

ade4 (version 1.01)

sepan: Separated Analyses in a K-tables

Description

performs K separated multivariate analyses of on object of class ktab containing K tables.

Usage

sepan(X, nf = 2)
plot.sepan (x, mfrow = NULL, csub = 2, ...)
summary.sepan (object, ...)
print.sepan (x, ...)

Arguments

X
an object of class 'ktab'
nf
an integer indicating the number of kept axes for each separated analysis
x, object
an object of class 'sepan'
mfrow
a vector of the form "c(nr,nc)", otherwise computed by a special own function n2mfrow
csub
a character size for the sub-titles, used with par("cex")*csub
...
further arguments passed to or from other methods

Value

  • returns a list of class 'sepan' containing :
  • calla call order
  • tab.namesa vector of characters with the names of tables
  • bloa numeric vector with the numbers of columns for each table
  • ranka numeric vector with the rank of the studied matrix for each table
  • Eiga numeric vector with all the eigenvalues
  • Lia data frame with the row coordinates
  • L1a data frame with the row normed scores
  • Coa data frame with the column coordinates
  • C1a data frame with the column normed coordinates
  • TLa data frame with the factors for Li L1
  • TCa data frame with the factors for Co C1

Details

The function plot on a 'sepan' object allows to compare inertias and structures between arrays. In black, the eigenvalues of kept axes in the object 'sepan'.

Examples

Run this code
data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
sep1 <- sepan(w)
sep1
summary(sep1)
plot(sep1)

Run the code above in your browser using DataLab