Learn R Programming

ade4 (version 1.01)

statis: STATIS, a method for analysing K-tables

Description

performs a STATIS analysis of K-tables.

Usage

statis(X, scannf = TRUE, nf = 3, tol = 1e-07)
plot.statis (x, xax = 1, yax = 2, option = 1:4, ...) 
print.statis (x, ...)

Arguments

X
an object of class 'ktab'
scannf
a logical value indicating whether the number of kept axes for the compromise should be asked
nf
if scannf FALSE, an integer indicating the number of kept axes for the compromise
tol
a tolerance threshold to test whether the distance matrix is Euclidean : an eigenvalue is considered positive if it is larger than -tol*lambda1 where lambda1 is the largest eigenvalue
statis, x
an object of class 'statis'
xax, yax
the numbers of the x-axis and the y-axis
option
an integer between 1 and 4, otherwise the 4 components of the plot are dispayed
...
further arguments passed to or from other methods

Value

  • statis returns a list of class 'statis' containing :
  • $RVa matrix with the all RV coefficients
  • RV.eiga numeric vector with all the eigenvalues
  • RV.cooa data frame with the array scores
  • tab.namesa vector of characters with the names of the arrays
  • $RV.tabwa numeric vector with the array weigths
  • nfan integer indicating the number of kept axes
  • rankan integer indicating the rank of the studied matrix
  • C.lia data frame with the row coordinates
  • C.Coa data frame with the column coordinates
  • T4a data frame with the principal vectors (for each table)
  • TLa data frame with the factors (not used)
  • TCa data frame with the factors for Co
  • T4a data frame with the factors for T4

References

Lavit, C. (1988) Analyse conjointe de tableaux quantitatifs, Masson, Paris. Lavit, C., Escoufier, Y., Sabatier, R. and Traissac, P. (1994) The ACT (Statis method). Computational Statistics and Data Analysis, 18, 97--119.

Examples

Run this code
data(jv73)
kta1 <- ktab.within(within.pca(jv73$morpho, jv73$fac.riv, scann = FALSE))
statis1 <- statis(kta1, scann = FALSE)
plot(statis1)

dudi1 <- dudi.pca(jv73$poi, scann = FALSE, scal = FALSE)
wit1 <- within(dudi1, jv73$fac.riv, scann = FALSE)
kta3 <- ktab.within(wit1)
data(jv73)
statis3 <- statis(kta3, scann = FALSE)
plot(statis3)

s.arrow(statis3$C.li, cgrid = 0)

kplot(statis3, traj = TRUE, arrow = FALSE, unique = TRUE, 
    clab = 0, csub = 3, cpoi = 3)
statis3

Run the code above in your browser using DataLab