Learn R Programming

ade4 (version 1.2-2)

mfa: Multiple Factorial Analysis

Description

performs a multiple factorial analysis, using an object of class ktab.

Usage

mfa(X, option = c("lambda1", "inertia", "uniform", "internal"), 
    scannf = TRUE, nf = 3)
plot.mfa (x, xax = 1, yax = 2, option.plot = 1:4, ...) 
print.mfa (x, ...) 
summary.mfa (object, ...)

Arguments

X
K-tables, an object of class ktab
option
a string of characters for the weighting of arrays options : lambda1{weighting of group k by the inverse of the first eigenvalue of the k analysis} inertia{weighting of group k by the inverse of
scannf
a logical value indicating whether the eigenvalues bar plot should be displayed
nf
if scannf FALSE, an integer indicating the number of kept axes
x, object
an object of class 'mfa'
xax, yax
the numbers of the x-axis and the y-axis
option.plot
an integer between 1 and 4, otherwise the 4 components of the plot are displayed
...
further arguments passed to or from other methods

Value

  • Returns a list including :
  • taba data frame with the modified array
  • ranka vector of ranks for the analyses
  • eiga numeric vector with the all eigenvalues
  • lia data frame with the coordinates of rows
  • TLa data frame with the factors associated to the rows (indicators of table)
  • coa data frame with the coordinates of columns
  • TCa data frame with the factors associated to the columns (indicators of table)
  • bloa vector indicating the number of variables for each table
  • lisupa data frame with the projections of normalized scores of rows for each table
  • cga data frame with the gravity center for the lisup
  • linka data frame containing the projected inertia and the links between the arrays and the reference array
  • corlia data frame giving the correlations between the $lisup and the $li

References

Escofier, B. and Pag�s, J. (1994) Multiple factor analysis (AFMULT package), Computational Statistics and Data Analysis, 18, 121--140.

Examples

Run this code
data(friday87)
w1 <- data.frame(scale(friday87$fau, scal = FALSE))
w2 <- ktab.data.frame(w1, friday87$fau.blo, 
    tabnames = friday87$tab.names)
mfa1 <- mfa(w2, scann = FALSE)
mfa1
plot(mfa1)

data(escopage)
w <- data.frame(scale(escopage$tab))
w <- ktab.data.frame(w, escopage$blo, tabnames = escopage$tab.names)
plot(mfa(w, scann = FALSE))

Run the code above in your browser using DataLab